Spaces:
Runtime error
Runtime error
import logging | |
from functools import partial | |
from typing import Optional | |
import typer | |
from bokeh.plotting import output_file as bokeh_output_file | |
from bokeh.plotting import save | |
from embedding_lenses.data import uploaded_file_to_dataframe | |
from embedding_lenses.dimensionality_reduction import get_tsne_embeddings, get_umap_embeddings | |
from embedding_lenses.embedding import load_model | |
from perplexity_lenses.data import documents_df_to_sentences_df, hub_dataset_to_dataframe | |
from perplexity_lenses.engine import DIMENSIONALITY_REDUCTION_ALGORITHMS, DOCUMENT_TYPES, EMBEDDING_MODELS, LANGUAGES, SEED, generate_plot | |
from perplexity_lenses.perplexity import KenlmModel | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
app = typer.Typer() | |
def main( | |
dataset: str = typer.Option("mc4", help="The name of the hub dataset or local csv/tsv file."), | |
dataset_config: Optional[str] = typer.Option("es", help="The configuration of the hub dataset, if any. Does not apply to local csv/tsv files."), | |
dataset_split: Optional[str] = typer.Option("train", help="The dataset split. Does not apply to local csv/tsv files."), | |
text_column: str = typer.Option("text", help="The text field name."), | |
language: str = typer.Option("es", help=f"The language of the text. Options: {LANGUAGES}"), | |
doc_type: str = typer.Option("sentence", help=f"Whether to embed at the sentence or document level. Options: {DOCUMENT_TYPES}."), | |
sample: int = typer.Option(1000, help="Maximum number of examples to use."), | |
dimensionality_reduction: str = typer.Option( | |
DIMENSIONALITY_REDUCTION_ALGORITHMS[0], | |
help=f"Whether to use UMAP or t-SNE for dimensionality reduction. Options: {DIMENSIONALITY_REDUCTION_ALGORITHMS}.", | |
), | |
model_name: str = typer.Option(EMBEDDING_MODELS[0], help=f"The sentence embedding model to use. Options: {EMBEDDING_MODELS}"), | |
output_file: str = typer.Option("perplexity.html", help="The name of the output visualization HTML file."), | |
): | |
""" | |
Perplexity Lenses: Visualize text embeddings in 2D using colors to represent perplexity values. | |
""" | |
logger.info("Loading embedding model...") | |
model = load_model(model_name) | |
dimensionality_reduction_function = ( | |
partial(get_umap_embeddings, random_state=SEED) if dimensionality_reduction.lower() == "umap" else partial(get_tsne_embeddings, random_state=SEED) | |
) | |
logger.info("Loading KenLM model...") | |
kenlm_model = KenlmModel.from_pretrained(language) | |
logger.info("Loading dataset...") | |
if dataset.endswith(".csv") or dataset.endswith(".tsv"): | |
df = uploaded_file_to_dataframe(dataset) | |
if doc_type.lower() == "sentence": | |
df = documents_df_to_sentences_df(df, text_column, sample, seed=SEED) | |
df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity) | |
else: | |
df = hub_dataset_to_dataframe(dataset, dataset_config, dataset_split, sample, text_column, kenlm_model, seed=SEED, doc_type=doc_type) | |
# Round perplexity | |
df["perplexity"] = df["perplexity"].round().astype(int) | |
logger.info(f"Perplexity range: {df['perplexity'].min()} - {df['perplexity'].max()}") | |
plot = generate_plot(df, text_column, "perplexity", None, dimensionality_reduction_function, model, seed=SEED) | |
logger.info("Saving plot") | |
bokeh_output_file(output_file) | |
save(plot) | |
logger.info("Done") | |
if __name__ == "__main__": | |
app() | |