Spaces:
Runtime error
Runtime error
Inital commit for perplexity lenses
Browse files- app.py +141 -0
- data.py +28 -0
- perplexity.py +37 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from functools import partial
|
3 |
+
from typing import Callable, Optional
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import streamlit as st
|
7 |
+
from bokeh.plotting import Figure
|
8 |
+
from embedding_lenses.data import uploaded_file_to_dataframe
|
9 |
+
from embedding_lenses.dimensionality_reduction import (get_tsne_embeddings,
|
10 |
+
get_umap_embeddings)
|
11 |
+
from embedding_lenses.embedding import embed_text, load_model
|
12 |
+
from embedding_lenses.utils import encode_labels
|
13 |
+
from embedding_lenses.visualization import draw_interactive_scatter_plot
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
|
16 |
+
from data import hub_dataset_to_dataframe
|
17 |
+
from perplexity import KenlmModel
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
EMBEDDING_MODELS = ["distiluse-base-multilingual-cased-v1", "all-mpnet-base-v2", "flax-sentence-embeddings/all_datasets_v3_mpnet-base"]
|
22 |
+
DIMENSIONALITY_REDUCTION_ALGORITHMS = ["UMAP", "t-SNE"]
|
23 |
+
LANGUAGES = [
|
24 |
+
"af",
|
25 |
+
"ar",
|
26 |
+
"az",
|
27 |
+
"be",
|
28 |
+
"bg",
|
29 |
+
"bn",
|
30 |
+
"ca",
|
31 |
+
"cs",
|
32 |
+
"da",
|
33 |
+
"de",
|
34 |
+
"el",
|
35 |
+
"en",
|
36 |
+
"es",
|
37 |
+
"et",
|
38 |
+
"fa",
|
39 |
+
"fi",
|
40 |
+
"fr",
|
41 |
+
"gu",
|
42 |
+
"he",
|
43 |
+
"hi",
|
44 |
+
"hr",
|
45 |
+
"hu",
|
46 |
+
"hy",
|
47 |
+
"id",
|
48 |
+
"is",
|
49 |
+
"it",
|
50 |
+
"ja",
|
51 |
+
"ka",
|
52 |
+
"kk",
|
53 |
+
"km",
|
54 |
+
"kn",
|
55 |
+
"ko",
|
56 |
+
"lt",
|
57 |
+
"lv",
|
58 |
+
"mk",
|
59 |
+
"ml",
|
60 |
+
"mn",
|
61 |
+
"mr",
|
62 |
+
"my",
|
63 |
+
"ne",
|
64 |
+
"nl",
|
65 |
+
"no",
|
66 |
+
"pl",
|
67 |
+
"pt",
|
68 |
+
"ro",
|
69 |
+
"ru",
|
70 |
+
"uk",
|
71 |
+
"zh",
|
72 |
+
]
|
73 |
+
SEED = 0
|
74 |
+
|
75 |
+
|
76 |
+
def generate_plot(
|
77 |
+
df: pd.DataFrame,
|
78 |
+
text_column: str,
|
79 |
+
label_column: str,
|
80 |
+
sample: Optional[int],
|
81 |
+
dimensionality_reduction_function: Callable,
|
82 |
+
model: SentenceTransformer,
|
83 |
+
) -> Figure:
|
84 |
+
if text_column not in df.columns:
|
85 |
+
raise ValueError(f"The specified column name doesn't exist. Columns available: {df.columns.values}")
|
86 |
+
if label_column not in df.columns:
|
87 |
+
df[label_column] = 0
|
88 |
+
df = df.dropna(subset=[text_column, label_column])
|
89 |
+
if sample:
|
90 |
+
df = df.sample(min(sample, df.shape[0]), random_state=SEED)
|
91 |
+
with st.spinner(text="Embedding text..."):
|
92 |
+
embeddings = embed_text(df[text_column].values.tolist(), model)
|
93 |
+
logger.info("Encoding labels")
|
94 |
+
encoded_labels = encode_labels(df[label_column])
|
95 |
+
with st.spinner("Reducing dimensionality..."):
|
96 |
+
embeddings_2d = dimensionality_reduction_function(embeddings)
|
97 |
+
logger.info("Generating figure")
|
98 |
+
plot = draw_interactive_scatter_plot(
|
99 |
+
df[text_column].values, embeddings_2d[:, 0], embeddings_2d[:, 1], encoded_labels.values, df[label_column].values, text_column, label_column
|
100 |
+
)
|
101 |
+
return plot
|
102 |
+
|
103 |
+
|
104 |
+
st.title("Perplexity Lenses")
|
105 |
+
st.write("Visualize text embeddings in 2D using colors to represent perplexity values.")
|
106 |
+
uploaded_file = st.file_uploader("Choose an csv/tsv file...", type=["csv", "tsv"])
|
107 |
+
st.write("Alternatively, select a dataset from the [hub](https://huggingface.co/datasets)")
|
108 |
+
col1, col2, col3 = st.columns(3)
|
109 |
+
with col1:
|
110 |
+
hub_dataset = st.text_input("Dataset name", "mc4")
|
111 |
+
with col2:
|
112 |
+
hub_dataset_config = st.text_input("Dataset configuration", "es")
|
113 |
+
with col3:
|
114 |
+
hub_dataset_split = st.text_input("Dataset split", "train")
|
115 |
+
|
116 |
+
text_column = st.text_input("Text column name", "text")
|
117 |
+
language = st.selectbox("Language", LANGUAGES, 12)
|
118 |
+
sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000)
|
119 |
+
dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0)
|
120 |
+
model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0)
|
121 |
+
|
122 |
+
with st.spinner(text="Loading embedding model..."):
|
123 |
+
model = load_model(model_name)
|
124 |
+
dimensionality_reduction_function = (
|
125 |
+
partial(get_umap_embeddings, random_state=SEED) if dimensionality_reduction == "UMAP" else partial(get_tsne_embeddings, random_state=SEED)
|
126 |
+
)
|
127 |
+
|
128 |
+
with st.spinner(text="Loading KenLM model..."):
|
129 |
+
kenlm_model = KenlmModel.from_pretrained(language)
|
130 |
+
|
131 |
+
if uploaded_file or hub_dataset:
|
132 |
+
with st.spinner("Loading dataset..."):
|
133 |
+
if uploaded_file:
|
134 |
+
df = uploaded_file_to_dataframe(uploaded_file)
|
135 |
+
df["perplexity"] = df[text_column].map(lambda x: model.get_perplexity(x[text_column]))
|
136 |
+
else:
|
137 |
+
df = hub_dataset_to_dataframe(hub_dataset, hub_dataset_config, hub_dataset_split, sample, text_column, kenlm_model, seed=SEED)
|
138 |
+
plot = generate_plot(df, text_column, "perplexity", sample, dimensionality_reduction_function, model)
|
139 |
+
logger.info("Displaying plot")
|
140 |
+
st.bokeh_chart(plot)
|
141 |
+
logger.info("Done")
|
data.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from datasets import load_dataset
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from perplexity import KenlmModel
|
8 |
+
|
9 |
+
|
10 |
+
def hub_dataset_to_dataframe(path: str, name: str, split: str, sample: int, text_column: str, model: KenlmModel, seed: int = 0) -> pd.DataFrame:
|
11 |
+
load_dataset_fn = partial(load_dataset, path=path)
|
12 |
+
if name:
|
13 |
+
load_dataset_fn = partial(load_dataset_fn, name=name)
|
14 |
+
if split:
|
15 |
+
load_dataset_fn = partial(load_dataset_fn, split=split)
|
16 |
+
dataset = (
|
17 |
+
load_dataset_fn(streaming=True)
|
18 |
+
.shuffle(buffer_size=10000, seed=seed)
|
19 |
+
.map(lambda x: {text_column: x[text_column], "perplexity": model.get_perplexity(x[text_column])})
|
20 |
+
)
|
21 |
+
instances = []
|
22 |
+
count = 0
|
23 |
+
for instance in tqdm(dataset, total=sample):
|
24 |
+
instances.append(instance)
|
25 |
+
count += 1
|
26 |
+
if count == sample:
|
27 |
+
break
|
28 |
+
return pd.DataFrame(instances)
|
perplexity.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import urllib.request
|
3 |
+
|
4 |
+
import kenlm
|
5 |
+
|
6 |
+
|
7 |
+
class KenlmModel:
|
8 |
+
def __init__(self, language):
|
9 |
+
download_kenlm_model(language)
|
10 |
+
self.model = kenlm.Model(f"{language}.arpa.bin")
|
11 |
+
|
12 |
+
@classmethod
|
13 |
+
def from_pretrained(cls, language: str):
|
14 |
+
return cls(language)
|
15 |
+
|
16 |
+
def get_perplexity(self, doc: str):
|
17 |
+
doc_log_score, doc_length = 0, 0
|
18 |
+
for line in doc.split("\n"):
|
19 |
+
log_score = self.model.score(line)
|
20 |
+
length = len(line.split()) + 1
|
21 |
+
doc_log_score += log_score
|
22 |
+
doc_length += length
|
23 |
+
return 10.0 ** (-doc_log_score / doc_length)
|
24 |
+
|
25 |
+
|
26 |
+
def download_kenlm_model(language: str):
|
27 |
+
root_url = "http://dl.fbaipublicfiles.com/cc_net/lm"
|
28 |
+
bin_name = f"{language}.arpa.bin"
|
29 |
+
model_name = f"{language}.sp.model"
|
30 |
+
bin_url = f"{root_url}/{bin_name}"
|
31 |
+
model_url = f"{root_url}/{model_name}"
|
32 |
+
|
33 |
+
if not os.path.isfile(bin_name):
|
34 |
+
urllib.request.urlretrieve(bin_url, bin_name)
|
35 |
+
|
36 |
+
if not os.path.isfile(model_name):
|
37 |
+
urllib.request.urlretrieve(model_url, model_name)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface-hub==0.0.17
|
2 |
+
streamlit==0.84.1
|
3 |
+
transformers==4.11.3
|
4 |
+
watchdog==2.1.3
|
5 |
+
sentence-transformers==2.0.0
|
6 |
+
bokeh==2.2.2
|
7 |
+
umap-learn==0.5.1
|
8 |
+
numpy==1.20.0
|
9 |
+
embedding-lenses==0.2.0
|
10 |
+
git+git://github.com/kpu/kenlm/archive/master.zip
|