Spaces:
Runtime error
Runtime error
Support visualizing both sentences and whole documents. Smooth down color assignment in visualization.
Browse files- app.py +25 -10
- data.py +0 -28
- perplexity_lenses/__init__.py +1 -0
- perplexity_lenses/data.py +43 -0
- perplexity.py → perplexity_lenses/perplexity.py +0 -0
- perplexity_lenses/visualization.py +35 -0
app.py
CHANGED
@@ -6,15 +6,14 @@ import pandas as pd
|
|
6 |
import streamlit as st
|
7 |
from bokeh.plotting import Figure
|
8 |
from embedding_lenses.data import uploaded_file_to_dataframe
|
9 |
-
from embedding_lenses.dimensionality_reduction import
|
10 |
-
get_umap_embeddings)
|
11 |
from embedding_lenses.embedding import embed_text, load_model
|
12 |
from embedding_lenses.utils import encode_labels
|
13 |
-
from embedding_lenses.visualization import draw_interactive_scatter_plot
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
|
16 |
-
from data import hub_dataset_to_dataframe
|
17 |
-
from perplexity import KenlmModel
|
|
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
@@ -70,6 +69,7 @@ LANGUAGES = [
|
|
70 |
"uk",
|
71 |
"zh",
|
72 |
]
|
|
|
73 |
SEED = 0
|
74 |
|
75 |
|
@@ -113,9 +113,18 @@ with col2:
|
|
113 |
with col3:
|
114 |
hub_dataset_split = st.text_input("Dataset split", "train")
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0)
|
120 |
model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0)
|
121 |
|
@@ -132,10 +141,16 @@ if uploaded_file or hub_dataset:
|
|
132 |
with st.spinner("Loading dataset..."):
|
133 |
if uploaded_file:
|
134 |
df = uploaded_file_to_dataframe(uploaded_file)
|
|
|
|
|
135 |
df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity)
|
136 |
else:
|
137 |
-
df = hub_dataset_to_dataframe(hub_dataset, hub_dataset_config, hub_dataset_split, sample, text_column, kenlm_model, seed=SEED)
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
logger.info("Displaying plot")
|
140 |
st.bokeh_chart(plot)
|
141 |
logger.info("Done")
|
|
|
6 |
import streamlit as st
|
7 |
from bokeh.plotting import Figure
|
8 |
from embedding_lenses.data import uploaded_file_to_dataframe
|
9 |
+
from embedding_lenses.dimensionality_reduction import get_tsne_embeddings, get_umap_embeddings
|
|
|
10 |
from embedding_lenses.embedding import embed_text, load_model
|
11 |
from embedding_lenses.utils import encode_labels
|
|
|
12 |
from sentence_transformers import SentenceTransformer
|
13 |
|
14 |
+
from perplexity_lenses.data import documents_df_to_sentences_df, hub_dataset_to_dataframe
|
15 |
+
from perplexity_lenses.perplexity import KenlmModel
|
16 |
+
from perplexity_lenses.visualization import draw_interactive_scatter_plot
|
17 |
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
|
|
69 |
"uk",
|
70 |
"zh",
|
71 |
]
|
72 |
+
DOCUMENT_TYPES = ["Whole document", "Sentence"]
|
73 |
SEED = 0
|
74 |
|
75 |
|
|
|
113 |
with col3:
|
114 |
hub_dataset_split = st.text_input("Dataset split", "train")
|
115 |
|
116 |
+
col4, col5 = st.columns(2)
|
117 |
+
with col4:
|
118 |
+
text_column = st.text_input("Text field name", "text")
|
119 |
+
with col5:
|
120 |
+
language = st.selectbox("Language", LANGUAGES, 12)
|
121 |
+
|
122 |
+
col6, col7 = st.columns(2)
|
123 |
+
with col6:
|
124 |
+
doc_type = st.selectbox("Document type", DOCUMENT_TYPES, 1)
|
125 |
+
with col7:
|
126 |
+
sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000)
|
127 |
+
|
128 |
dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0)
|
129 |
model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0)
|
130 |
|
|
|
141 |
with st.spinner("Loading dataset..."):
|
142 |
if uploaded_file:
|
143 |
df = uploaded_file_to_dataframe(uploaded_file)
|
144 |
+
if doc_type == "Sentence":
|
145 |
+
df = documents_df_to_sentences_df(df, text_column, sample, seed=SEED)
|
146 |
df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity)
|
147 |
else:
|
148 |
+
df = hub_dataset_to_dataframe(hub_dataset, hub_dataset_config, hub_dataset_split, sample, text_column, kenlm_model, seed=SEED, doc_type=doc_type)
|
149 |
+
|
150 |
+
# Round perplexity
|
151 |
+
df["perplexity"] = df["perplexity"].round().astype(int)
|
152 |
+
logger.info(f"Perplexity range: {df['perplexity'].min()} - {df['perplexity'].max()}")
|
153 |
+
plot = generate_plot(df, text_column, "perplexity", None, dimensionality_reduction_function, model)
|
154 |
logger.info("Displaying plot")
|
155 |
st.bokeh_chart(plot)
|
156 |
logger.info("Done")
|
data.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
from functools import partial
|
2 |
-
|
3 |
-
import pandas as pd
|
4 |
-
from datasets import load_dataset
|
5 |
-
from tqdm import tqdm
|
6 |
-
|
7 |
-
from perplexity import KenlmModel
|
8 |
-
|
9 |
-
|
10 |
-
def hub_dataset_to_dataframe(path: str, name: str, split: str, sample: int, text_column: str, model: KenlmModel, seed: int = 0) -> pd.DataFrame:
|
11 |
-
load_dataset_fn = partial(load_dataset, path=path)
|
12 |
-
if name:
|
13 |
-
load_dataset_fn = partial(load_dataset_fn, name=name)
|
14 |
-
if split:
|
15 |
-
load_dataset_fn = partial(load_dataset_fn, split=split)
|
16 |
-
dataset = (
|
17 |
-
load_dataset_fn(streaming=True)
|
18 |
-
.shuffle(buffer_size=10000, seed=seed)
|
19 |
-
.map(lambda x: {text_column: x[text_column], "perplexity": model.get_perplexity(x[text_column])})
|
20 |
-
)
|
21 |
-
instances = []
|
22 |
-
count = 0
|
23 |
-
for instance in tqdm(dataset, total=sample):
|
24 |
-
instances.append(instance)
|
25 |
-
count += 1
|
26 |
-
if count == sample:
|
27 |
-
break
|
28 |
-
return pd.DataFrame(instances)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
perplexity_lenses/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.1.0"
|
perplexity_lenses/data.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from datasets import load_dataset
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from perplexity_lenses.perplexity import KenlmModel
|
9 |
+
|
10 |
+
|
11 |
+
def hub_dataset_to_dataframe(
|
12 |
+
path: str, name: str, split: str, sample: int, text_column: str, model: KenlmModel, seed: int = 0, doc_type: str = "Whole document"
|
13 |
+
) -> pd.DataFrame:
|
14 |
+
load_dataset_fn = partial(load_dataset, path=path)
|
15 |
+
if name:
|
16 |
+
load_dataset_fn = partial(load_dataset_fn, name=name)
|
17 |
+
if split:
|
18 |
+
load_dataset_fn = partial(load_dataset_fn, split=split)
|
19 |
+
dataset = load_dataset_fn(streaming=True).shuffle(buffer_size=10000, seed=seed)
|
20 |
+
if doc_type == "Sentence":
|
21 |
+
dataset = dataset.map(lambda x: [{text_column: sentence, "perplexity": model.get_perplexity(sentence)} for sentence in x[text_column].split("\n")])
|
22 |
+
else:
|
23 |
+
dataset = dataset.map(lambda x: {text_column: x[text_column], "perplexity": model.get_perplexity(x[text_column])})
|
24 |
+
instances = []
|
25 |
+
count = 0
|
26 |
+
for instance in tqdm(dataset, total=sample):
|
27 |
+
if isinstance(instance, list):
|
28 |
+
for sentence in instance:
|
29 |
+
instances.append(sentence)
|
30 |
+
count += 1
|
31 |
+
if count == sample:
|
32 |
+
break
|
33 |
+
else:
|
34 |
+
instances.append(instance)
|
35 |
+
count += 1
|
36 |
+
if count == sample:
|
37 |
+
break
|
38 |
+
return pd.DataFrame(instances)
|
39 |
+
|
40 |
+
|
41 |
+
def documents_df_to_sentences_df(df: pd.DataFrame, text_column: str, sample: int, seed: int = 0):
|
42 |
+
df_sentences = pd.DataFrame({text_column: np.array(df[text_column].map(lambda x: x.split("\n")).values.tolist()).flatten()})
|
43 |
+
return df_sentences.sample(min(sample, df.shape[0]), random_state=seed)
|
perplexity.py → perplexity_lenses/perplexity.py
RENAMED
File without changes
|
perplexity_lenses/visualization.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from bokeh.models import ColumnDataSource, HoverTool
|
3 |
+
from bokeh.palettes import Cividis256 as Pallete
|
4 |
+
from bokeh.plotting import Figure, figure
|
5 |
+
from bokeh.transform import factor_cmap
|
6 |
+
|
7 |
+
|
8 |
+
def draw_interactive_scatter_plot(
|
9 |
+
texts: np.ndarray, xs: np.ndarray, ys: np.ndarray, values: np.ndarray, labels: np.ndarray, text_column: str, label_column: str
|
10 |
+
) -> Figure:
|
11 |
+
# Smooth down values for coloring, by taking the entropy = log10(perplexity) and multiply it by 10000
|
12 |
+
values = ((np.log10(values)) * 10000).round().astype(int)
|
13 |
+
# Normalize values to range between 0-255, to assign a color for each value
|
14 |
+
max_value = values.max()
|
15 |
+
min_value = values.min()
|
16 |
+
if max_value - min_value == 0:
|
17 |
+
values_color = np.ones(len(values))
|
18 |
+
else:
|
19 |
+
values_color = ((values - min_value) / (max_value - min_value) * 255).round().astype(int)
|
20 |
+
values_color_sorted = sorted(values_color)
|
21 |
+
|
22 |
+
values_list = values.astype(str).tolist()
|
23 |
+
values_sorted = sorted(values_list)
|
24 |
+
labels_list = labels.astype(str).tolist()
|
25 |
+
|
26 |
+
source = ColumnDataSource(data=dict(x=xs, y=ys, text=texts, label=values_list, original_label=labels_list))
|
27 |
+
hover = HoverTool(tooltips=[(text_column, "@text{safe}"), (label_column, "@original_label")])
|
28 |
+
p = figure(plot_width=800, plot_height=800, tools=[hover])
|
29 |
+
p.circle("x", "y", size=10, source=source, fill_color=factor_cmap("label", palette=[Pallete[id_] for id_ in values_color_sorted], factors=values_sorted))
|
30 |
+
|
31 |
+
p.axis.visible = False
|
32 |
+
p.xgrid.grid_line_color = None
|
33 |
+
p.ygrid.grid_line_color = None
|
34 |
+
p.toolbar.logo = None
|
35 |
+
return p
|