Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -28,22 +28,24 @@ def load_cnn():
|
|
28 |
model.eval()
|
29 |
|
30 |
return model
|
31 |
-
|
32 |
-
def predict_sentiment(text, model, torch=False):
|
33 |
if torch == True:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
else:
|
43 |
processor.transform(text)
|
44 |
prediction = model.predict([text])
|
45 |
return prediction
|
46 |
-
|
47 |
|
48 |
|
49 |
model_1 = load_model()
|
|
|
28 |
model.eval()
|
29 |
|
30 |
return model
|
31 |
+
def predict_sentiment(text, model, vocab, tokenizer):
|
|
|
32 |
if torch == True:
|
33 |
+
processor.transform(text)
|
34 |
+
tokens = tokenizer(text)
|
35 |
+
encoded = [vocab[token] for token in tokens]
|
36 |
+
input_tensor = torch.tensor(encoded).unsqueeze(0).to(device)
|
37 |
+
|
38 |
+
with torch.no_grad(): # No gradient needed
|
39 |
+
model.eval() # Evaluation mode
|
40 |
+
outputs = model(input_tensor)
|
41 |
+
probs = torch.softmax(outputs, dim=1)
|
42 |
+
pred_class = torch.argmax(probs, dim=1).item()
|
43 |
+
|
44 |
+
return pred_class # Return the predicted class index
|
45 |
else:
|
46 |
processor.transform(text)
|
47 |
prediction = model.predict([text])
|
48 |
return prediction
|
|
|
49 |
|
50 |
|
51 |
model_1 = load_model()
|