eforse01 commited on
Commit
c6ce0ae
·
verified ·
1 Parent(s): efb4297

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -30
app.py CHANGED
@@ -4,7 +4,7 @@ import xgboost as xgb
4
  from sklearn.model_selection import train_test_split
5
  from sklearn.metrics import mean_squared_error
6
  import gradio as gr
7
- import json
8
 
9
  # API Endpoints
10
  WEATHER_API = "https://api.open-meteo.com/v1/forecast"
@@ -17,29 +17,30 @@ def fetch_weather_data():
17
  "latitude": 59.3293, # Stockholm latitude
18
  "longitude": 18.0686, # Stockholm longitude
19
  "hourly": ["temperature_2m", "precipitation", "wind_speed_10m", "humidity"],
 
 
20
  }
21
  response = requests.get(WEATHER_API, params=params)
22
- return response.json()
 
23
 
24
  # Fetch electricity price data
25
  def fetch_electricity_prices():
26
  response = requests.get(ELECTRICITY_PRICE_API + "/json/sv")
27
- return response.json()
 
28
 
29
  # Fetch energy production prices
30
  def fetch_energy_production_data():
31
- # Customize parameters based on API documentation
32
  response = requests.get(ENERGY_PRODUCTION_API, params={})
33
- return response.json()
 
34
 
35
  # Prepare the dataset
36
  def prepare_dataset(weather_data, electricity_data, energy_data):
37
- weather_df = pd.DataFrame(weather_data["hourly"])
38
- electricity_df = pd.DataFrame(electricity_data)
39
- energy_df = pd.DataFrame(energy_data)
40
-
41
- # Combine dataframes
42
- dataset = pd.concat([weather_df, electricity_df, energy_df], axis=1)
43
  return dataset
44
 
45
  # Train the model
@@ -53,30 +54,31 @@ def train_model(dataset):
53
  predictions = model.predict(X_test)
54
 
55
  rmse = mean_squared_error(y_test, predictions, squared=False)
56
- return model, rmse
 
57
 
58
- # Prediction function
59
- def predict_price(input_data):
60
- # Convert input data to DataFrame for prediction
61
- input_df = pd.DataFrame([input_data])
62
- prediction = model.predict(input_df)
63
  return prediction[0]
64
 
65
- # Main function for Gradio interface
66
  def gradio_interface():
67
- # Fetch data
68
- weather_data = fetch_weather_data()
69
- electricity_data = fetch_electricity_prices()
70
- energy_data = fetch_energy_production_data()
71
-
72
- # Prepare dataset and train model
73
- dataset = prepare_dataset(weather_data, electricity_data, energy_data)
74
- global model
75
- model, rmse = train_model(dataset)
 
76
 
77
- # Define Gradio interface
78
  interface = gr.Interface(
79
- fn=predict_price,
80
  inputs=[
81
  gr.inputs.Number(label="Temperature (°C)"),
82
  gr.inputs.Number(label="Precipitation (mm)"),
@@ -86,7 +88,6 @@ def gradio_interface():
86
  gr.inputs.Number(label="Historical Electricity Price")
87
  ],
88
  outputs=gr.outputs.Textbox(label="Predicted Electricity Price"),
89
- live=False,
90
  title="Electricity Price Prediction",
91
  description="Predict future electricity prices based on weather and energy data."
92
  )
@@ -94,4 +95,16 @@ def gradio_interface():
94
  interface.launch()
95
 
96
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
97
  gradio_interface()
 
 
4
  from sklearn.model_selection import train_test_split
5
  from sklearn.metrics import mean_squared_error
6
  import gradio as gr
7
+ import os
8
 
9
  # API Endpoints
10
  WEATHER_API = "https://api.open-meteo.com/v1/forecast"
 
17
  "latitude": 59.3293, # Stockholm latitude
18
  "longitude": 18.0686, # Stockholm longitude
19
  "hourly": ["temperature_2m", "precipitation", "wind_speed_10m", "humidity"],
20
+ "start": "2023-01-01",
21
+ "end": "2023-12-31"
22
  }
23
  response = requests.get(WEATHER_API, params=params)
24
+ response.raise_for_status()
25
+ return pd.DataFrame(response.json()["hourly"])
26
 
27
  # Fetch electricity price data
28
  def fetch_electricity_prices():
29
  response = requests.get(ELECTRICITY_PRICE_API + "/json/sv")
30
+ response.raise_for_status()
31
+ return pd.DataFrame(response.json())
32
 
33
  # Fetch energy production prices
34
  def fetch_energy_production_data():
35
+ # Placeholder for actual API parameters
36
  response = requests.get(ENERGY_PRODUCTION_API, params={})
37
+ response.raise_for_status()
38
+ return pd.DataFrame(response.json())
39
 
40
  # Prepare the dataset
41
  def prepare_dataset(weather_data, electricity_data, energy_data):
42
+ dataset = pd.concat([weather_data, electricity_data, energy_data], axis=1)
43
+ dataset = dataset.dropna() # Remove any rows with missing values
 
 
 
 
44
  return dataset
45
 
46
  # Train the model
 
54
  predictions = model.predict(X_test)
55
 
56
  rmse = mean_squared_error(y_test, predictions, squared=False)
57
+ model.save_model("electricity_price_model.json")
58
+ return rmse
59
 
60
+ # Load the model and make predictions
61
+ def predict_price(features):
62
+ model = xgb.XGBRegressor()
63
+ model.load_model("electricity_price_model.json")
64
+ prediction = model.predict(pd.DataFrame([features]))
65
  return prediction[0]
66
 
67
+ # Gradio Interface
68
  def gradio_interface():
69
+ def wrapper(temp, precip, wind_speed, humidity, energy_price, electricity_price):
70
+ features = {
71
+ "temperature_2m": temp,
72
+ "precipitation": precip,
73
+ "wind_speed_10m": wind_speed,
74
+ "humidity": humidity,
75
+ "energy_price": energy_price,
76
+ "electricity_price": electricity_price
77
+ }
78
+ return predict_price(features)
79
 
 
80
  interface = gr.Interface(
81
+ fn=wrapper,
82
  inputs=[
83
  gr.inputs.Number(label="Temperature (°C)"),
84
  gr.inputs.Number(label="Precipitation (mm)"),
 
88
  gr.inputs.Number(label="Historical Electricity Price")
89
  ],
90
  outputs=gr.outputs.Textbox(label="Predicted Electricity Price"),
 
91
  title="Electricity Price Prediction",
92
  description="Predict future electricity prices based on weather and energy data."
93
  )
 
95
  interface.launch()
96
 
97
  if __name__ == "__main__":
98
+ # Fetch data
99
+ weather_data = fetch_weather_data()
100
+ electricity_data = fetch_electricity_prices()
101
+ energy_data = fetch_energy_production_data()
102
+
103
+ # Prepare dataset and train the model
104
+ dataset = prepare_dataset(weather_data, electricity_data, energy_data)
105
+ rmse = train_model(dataset)
106
+ print(f"Model trained with RMSE: {rmse}")
107
+
108
+ # Launch Gradio interface
109
  gradio_interface()
110
+