Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import xgboost as xgb
|
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
import gradio as gr
|
7 |
-
import
|
8 |
|
9 |
# API Endpoints
|
10 |
WEATHER_API = "https://api.open-meteo.com/v1/forecast"
|
@@ -17,29 +17,30 @@ def fetch_weather_data():
|
|
17 |
"latitude": 59.3293, # Stockholm latitude
|
18 |
"longitude": 18.0686, # Stockholm longitude
|
19 |
"hourly": ["temperature_2m", "precipitation", "wind_speed_10m", "humidity"],
|
|
|
|
|
20 |
}
|
21 |
response = requests.get(WEATHER_API, params=params)
|
22 |
-
|
|
|
23 |
|
24 |
# Fetch electricity price data
|
25 |
def fetch_electricity_prices():
|
26 |
response = requests.get(ELECTRICITY_PRICE_API + "/json/sv")
|
27 |
-
|
|
|
28 |
|
29 |
# Fetch energy production prices
|
30 |
def fetch_energy_production_data():
|
31 |
-
#
|
32 |
response = requests.get(ENERGY_PRODUCTION_API, params={})
|
33 |
-
|
|
|
34 |
|
35 |
# Prepare the dataset
|
36 |
def prepare_dataset(weather_data, electricity_data, energy_data):
|
37 |
-
|
38 |
-
|
39 |
-
energy_df = pd.DataFrame(energy_data)
|
40 |
-
|
41 |
-
# Combine dataframes
|
42 |
-
dataset = pd.concat([weather_df, electricity_df, energy_df], axis=1)
|
43 |
return dataset
|
44 |
|
45 |
# Train the model
|
@@ -53,30 +54,31 @@ def train_model(dataset):
|
|
53 |
predictions = model.predict(X_test)
|
54 |
|
55 |
rmse = mean_squared_error(y_test, predictions, squared=False)
|
56 |
-
|
|
|
57 |
|
58 |
-
#
|
59 |
-
def predict_price(
|
60 |
-
|
61 |
-
|
62 |
-
prediction = model.predict(
|
63 |
return prediction[0]
|
64 |
|
65 |
-
#
|
66 |
def gradio_interface():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
76 |
|
77 |
-
# Define Gradio interface
|
78 |
interface = gr.Interface(
|
79 |
-
fn=
|
80 |
inputs=[
|
81 |
gr.inputs.Number(label="Temperature (°C)"),
|
82 |
gr.inputs.Number(label="Precipitation (mm)"),
|
@@ -86,7 +88,6 @@ def gradio_interface():
|
|
86 |
gr.inputs.Number(label="Historical Electricity Price")
|
87 |
],
|
88 |
outputs=gr.outputs.Textbox(label="Predicted Electricity Price"),
|
89 |
-
live=False,
|
90 |
title="Electricity Price Prediction",
|
91 |
description="Predict future electricity prices based on weather and energy data."
|
92 |
)
|
@@ -94,4 +95,16 @@ def gradio_interface():
|
|
94 |
interface.launch()
|
95 |
|
96 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
gradio_interface()
|
|
|
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
import gradio as gr
|
7 |
+
import os
|
8 |
|
9 |
# API Endpoints
|
10 |
WEATHER_API = "https://api.open-meteo.com/v1/forecast"
|
|
|
17 |
"latitude": 59.3293, # Stockholm latitude
|
18 |
"longitude": 18.0686, # Stockholm longitude
|
19 |
"hourly": ["temperature_2m", "precipitation", "wind_speed_10m", "humidity"],
|
20 |
+
"start": "2023-01-01",
|
21 |
+
"end": "2023-12-31"
|
22 |
}
|
23 |
response = requests.get(WEATHER_API, params=params)
|
24 |
+
response.raise_for_status()
|
25 |
+
return pd.DataFrame(response.json()["hourly"])
|
26 |
|
27 |
# Fetch electricity price data
|
28 |
def fetch_electricity_prices():
|
29 |
response = requests.get(ELECTRICITY_PRICE_API + "/json/sv")
|
30 |
+
response.raise_for_status()
|
31 |
+
return pd.DataFrame(response.json())
|
32 |
|
33 |
# Fetch energy production prices
|
34 |
def fetch_energy_production_data():
|
35 |
+
# Placeholder for actual API parameters
|
36 |
response = requests.get(ENERGY_PRODUCTION_API, params={})
|
37 |
+
response.raise_for_status()
|
38 |
+
return pd.DataFrame(response.json())
|
39 |
|
40 |
# Prepare the dataset
|
41 |
def prepare_dataset(weather_data, electricity_data, energy_data):
|
42 |
+
dataset = pd.concat([weather_data, electricity_data, energy_data], axis=1)
|
43 |
+
dataset = dataset.dropna() # Remove any rows with missing values
|
|
|
|
|
|
|
|
|
44 |
return dataset
|
45 |
|
46 |
# Train the model
|
|
|
54 |
predictions = model.predict(X_test)
|
55 |
|
56 |
rmse = mean_squared_error(y_test, predictions, squared=False)
|
57 |
+
model.save_model("electricity_price_model.json")
|
58 |
+
return rmse
|
59 |
|
60 |
+
# Load the model and make predictions
|
61 |
+
def predict_price(features):
|
62 |
+
model = xgb.XGBRegressor()
|
63 |
+
model.load_model("electricity_price_model.json")
|
64 |
+
prediction = model.predict(pd.DataFrame([features]))
|
65 |
return prediction[0]
|
66 |
|
67 |
+
# Gradio Interface
|
68 |
def gradio_interface():
|
69 |
+
def wrapper(temp, precip, wind_speed, humidity, energy_price, electricity_price):
|
70 |
+
features = {
|
71 |
+
"temperature_2m": temp,
|
72 |
+
"precipitation": precip,
|
73 |
+
"wind_speed_10m": wind_speed,
|
74 |
+
"humidity": humidity,
|
75 |
+
"energy_price": energy_price,
|
76 |
+
"electricity_price": electricity_price
|
77 |
+
}
|
78 |
+
return predict_price(features)
|
79 |
|
|
|
80 |
interface = gr.Interface(
|
81 |
+
fn=wrapper,
|
82 |
inputs=[
|
83 |
gr.inputs.Number(label="Temperature (°C)"),
|
84 |
gr.inputs.Number(label="Precipitation (mm)"),
|
|
|
88 |
gr.inputs.Number(label="Historical Electricity Price")
|
89 |
],
|
90 |
outputs=gr.outputs.Textbox(label="Predicted Electricity Price"),
|
|
|
91 |
title="Electricity Price Prediction",
|
92 |
description="Predict future electricity prices based on weather and energy data."
|
93 |
)
|
|
|
95 |
interface.launch()
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
+
# Fetch data
|
99 |
+
weather_data = fetch_weather_data()
|
100 |
+
electricity_data = fetch_electricity_prices()
|
101 |
+
energy_data = fetch_energy_production_data()
|
102 |
+
|
103 |
+
# Prepare dataset and train the model
|
104 |
+
dataset = prepare_dataset(weather_data, electricity_data, energy_data)
|
105 |
+
rmse = train_model(dataset)
|
106 |
+
print(f"Model trained with RMSE: {rmse}")
|
107 |
+
|
108 |
+
# Launch Gradio interface
|
109 |
gradio_interface()
|
110 |
+
|