eforse01 commited on
Commit
5152494
·
verified ·
1 Parent(s): 74e922e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -23
app.py CHANGED
@@ -1,26 +1,64 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
-
4
- # Load the fine-tuned model and tokenizer from Hugging Face
5
- model_name = "eforse01/lora_model"
6
- model = AutoModelForCausalLM.from_pretrained(model_name)
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
-
9
- # Define the chatbot function
10
- def chatbot(user_input):
11
- inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True).to("cuda")
12
- outputs = model.generate(inputs.input_ids, max_new_tokens=50, temperature=0.7)
13
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
- return response
15
-
16
- # Create the Gradio interface
17
- interface = gr.Interface(
18
- fn=chatbot,
19
- inputs="text",
20
- outputs="text",
21
- title="Fine-Tuned Llama Chatbot",
22
- description="Talk to the fine-tuned Llama-3 model!",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  )
24
 
25
- # Launch the app
26
- interface.launch()
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
  )
61
 
62
+
63
+ if __name__ == "__main__":
64
+ demo.launch()