|
import PIL.Image |
|
import cv2 |
|
import torch |
|
from loguru import logger |
|
|
|
from iopaint.const import INSTRUCT_PIX2PIX_NAME |
|
from .base import DiffusionInpaintModel |
|
from iopaint.schema import InpaintRequest |
|
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only |
|
|
|
|
|
class InstructPix2Pix(DiffusionInpaintModel): |
|
name = INSTRUCT_PIX2PIX_NAME |
|
pad_mod = 8 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from diffusers import StableDiffusionInstructPix2PixPipeline |
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) |
|
|
|
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)} |
|
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update( |
|
dict( |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
) |
|
|
|
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained( |
|
self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs |
|
) |
|
enable_low_mem(self.model, kwargs.get("low_mem", False)) |
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu: |
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
|
|
def forward(self, image, mask, config: InpaintRequest): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0] |
|
""" |
|
output = self.model( |
|
image=PIL.Image.fromarray(image), |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
num_inference_steps=config.sd_steps, |
|
image_guidance_scale=config.p2p_image_guidance_scale, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np", |
|
generator=torch.manual_seed(config.sd_seed), |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|