nikunjkdtechnoland
init commit some more files
89c278d
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import spectral_norm as spectral_norm_fn
from torch.nn.utils import weight_norm as weight_norm_fn
from PIL import Image
from torchvision import transforms
from torchvision import utils as vutils
from utils.tools import extract_image_patches, flow_to_image, \
reduce_mean, reduce_sum, default_loader, same_padding
class Generator(nn.Module):
def __init__(self, config, use_cuda, device_ids):
super(Generator, self).__init__()
self.input_dim = config['input_dim']
self.cnum = config['ngf']
self.use_cuda = use_cuda
self.device_ids = device_ids
self.coarse_generator = CoarseGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids)
self.fine_generator = FineGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids)
def forward(self, x, mask):
x_stage1 = self.coarse_generator(x, mask)
x_stage2, offset_flow = self.fine_generator(x, x_stage1, mask)
return x_stage1, x_stage2, offset_flow
class CoarseGenerator(nn.Module):
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
super(CoarseGenerator, self).__init__()
self.use_cuda = use_cuda
self.device_ids = device_ids
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
self.conv2_downsample = gen_conv(cnum, cnum*2, 3, 2, 1)
self.conv3 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
self.conv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1)
self.conv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2)
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4)
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8)
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16)
self.conv11 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.conv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.conv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1)
self.conv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
self.conv15 = gen_conv(cnum*2, cnum, 3, 1, 1)
self.conv16 = gen_conv(cnum, cnum//2, 3, 1, 1)
self.conv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none')
def forward(self, x, mask):
# For indicating the boundaries of images
ones = torch.ones(x.size(0), 1, x.size(2), x.size(3))
if self.use_cuda:
ones = ones.cuda()
mask = mask.cuda()
# 5 x 256 x 256
x = self.conv1(torch.cat([x, ones, mask], dim=1))
x = self.conv2_downsample(x)
# cnum*2 x 128 x 128
x = self.conv3(x)
x = self.conv4_downsample(x)
# cnum*4 x 64 x 64
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7_atrous(x)
x = self.conv8_atrous(x)
x = self.conv9_atrous(x)
x = self.conv10_atrous(x)
x = self.conv11(x)
x = self.conv12(x)
x = F.interpolate(x, scale_factor=2, mode='nearest')
# cnum*2 x 128 x 128
x = self.conv13(x)
x = self.conv14(x)
x = F.interpolate(x, scale_factor=2, mode='nearest')
# cnum x 256 x 256
x = self.conv15(x)
x = self.conv16(x)
x = self.conv17(x)
# 3 x 256 x 256
x_stage1 = torch.clamp(x, -1., 1.)
return x_stage1
class FineGenerator(nn.Module):
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
super(FineGenerator, self).__init__()
self.use_cuda = use_cuda
self.device_ids = device_ids
# 3 x 256 x 256
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
self.conv2_downsample = gen_conv(cnum, cnum, 3, 2, 1)
# cnum*2 x 128 x 128
self.conv3 = gen_conv(cnum, cnum*2, 3, 1, 1)
self.conv4_downsample = gen_conv(cnum*2, cnum*2, 3, 2, 1)
# cnum*4 x 64 x 64
self.conv5 = gen_conv(cnum*2, cnum*4, 3, 1, 1)
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2)
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4)
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8)
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16)
# attention branch
# 3 x 256 x 256
self.pmconv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
self.pmconv2_downsample = gen_conv(cnum, cnum, 3, 2, 1)
# cnum*2 x 128 x 128
self.pmconv3 = gen_conv(cnum, cnum*2, 3, 1, 1)
self.pmconv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1)
# cnum*4 x 64 x 64
self.pmconv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.pmconv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1, activation='relu')
self.contextul_attention = ContextualAttention(ksize=3, stride=1, rate=2, fuse_k=3, softmax_scale=10,
fuse=True, use_cuda=self.use_cuda, device_ids=self.device_ids)
self.pmconv9 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.pmconv10 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.allconv11 = gen_conv(cnum*8, cnum*4, 3, 1, 1)
self.allconv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
self.allconv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1)
self.allconv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
self.allconv15 = gen_conv(cnum*2, cnum, 3, 1, 1)
self.allconv16 = gen_conv(cnum, cnum//2, 3, 1, 1)
self.allconv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none')
def forward(self, xin, x_stage1, mask):
x1_inpaint = x_stage1 * mask + xin * (1. - mask)
# For indicating the boundaries of images
ones = torch.ones(xin.size(0), 1, xin.size(2), xin.size(3))
if self.use_cuda:
ones = ones.cuda()
mask = mask.cuda()
# conv branch
xnow = torch.cat([x1_inpaint, ones, mask], dim=1)
x = self.conv1(xnow)
x = self.conv2_downsample(x)
x = self.conv3(x)
x = self.conv4_downsample(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7_atrous(x)
x = self.conv8_atrous(x)
x = self.conv9_atrous(x)
x = self.conv10_atrous(x)
x_hallu = x
# attention branch
x = self.pmconv1(xnow)
x = self.pmconv2_downsample(x)
x = self.pmconv3(x)
x = self.pmconv4_downsample(x)
x = self.pmconv5(x)
x = self.pmconv6(x)
x, offset_flow = self.contextul_attention(x, x, mask)
x = self.pmconv9(x)
x = self.pmconv10(x)
pm = x
x = torch.cat([x_hallu, pm], dim=1)
# merge two branches
x = self.allconv11(x)
x = self.allconv12(x)
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = self.allconv13(x)
x = self.allconv14(x)
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = self.allconv15(x)
x = self.allconv16(x)
x = self.allconv17(x)
x_stage2 = torch.clamp(x, -1., 1.)
return x_stage2, offset_flow
class ContextualAttention(nn.Module):
def __init__(self, ksize=3, stride=1, rate=1, fuse_k=3, softmax_scale=10,
fuse=False, use_cuda=False, device_ids=None):
super(ContextualAttention, self).__init__()
self.ksize = ksize
self.stride = stride
self.rate = rate
self.fuse_k = fuse_k
self.softmax_scale = softmax_scale
self.fuse = fuse
self.use_cuda = use_cuda
self.device_ids = device_ids
def forward(self, f, b, mask=None):
""" Contextual attention layer implementation.
Contextual attention is first introduced in publication:
Generative Image Inpainting with Contextual Attention, Yu et al.
Args:
f: Input feature to match (foreground).
b: Input feature for match (background).
mask: Input mask for b, indicating patches not available.
ksize: Kernel size for contextual attention.
stride: Stride for extracting patches from b.
rate: Dilation for matching.
softmax_scale: Scaled softmax for attention.
Returns:
torch.tensor: output
"""
# get shapes
raw_int_fs = list(f.size()) # b*c*h*w
raw_int_bs = list(b.size()) # b*c*h*w
# extract patches from background with stride and rate
kernel = 2 * self.rate
# raw_w is extracted for reconstruction
raw_w = extract_image_patches(b, ksizes=[kernel, kernel],
strides=[self.rate*self.stride,
self.rate*self.stride],
rates=[1, 1],
padding='same') # [N, C*k*k, L]
# raw_shape: [N, C, k, k, L]
raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1)
raw_w = raw_w.permute(0, 4, 1, 2, 3) # raw_shape: [N, L, C, k, k]
raw_w_groups = torch.split(raw_w, 1, dim=0)
# downscaling foreground option: downscaling both foreground and
# background for matching and use original background for reconstruction.
f = F.interpolate(f, scale_factor=1./self.rate, mode='nearest')
b = F.interpolate(b, scale_factor=1./self.rate, mode='nearest')
int_fs = list(f.size()) # b*c*h*w
int_bs = list(b.size())
f_groups = torch.split(f, 1, dim=0) # split tensors along the batch dimension
# w shape: [N, C*k*k, L]
w = extract_image_patches(b, ksizes=[self.ksize, self.ksize],
strides=[self.stride, self.stride],
rates=[1, 1],
padding='same')
# w shape: [N, C, k, k, L]
w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1)
w = w.permute(0, 4, 1, 2, 3) # w shape: [N, L, C, k, k]
w_groups = torch.split(w, 1, dim=0)
# process mask
if mask is None:
mask = torch.zeros([int_bs[0], 1, int_bs[2], int_bs[3]])
if self.use_cuda:
mask = mask.cuda()
else:
mask = F.interpolate(mask, scale_factor=1./(4*self.rate), mode='nearest')
int_ms = list(mask.size())
# m shape: [N, C*k*k, L]
m = extract_image_patches(mask, ksizes=[self.ksize, self.ksize],
strides=[self.stride, self.stride],
rates=[1, 1],
padding='same')
# m shape: [N, C, k, k, L]
m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1)
m = m.permute(0, 4, 1, 2, 3) # m shape: [N, L, C, k, k]
m = m[0] # m shape: [L, C, k, k]
# mm shape: [L, 1, 1, 1]
mm = (reduce_mean(m, axis=[1, 2, 3], keepdim=True)==0.).to(torch.float32)
mm = mm.permute(1, 0, 2, 3) # mm shape: [1, L, 1, 1]
y = []
offsets = []
k = self.fuse_k
scale = self.softmax_scale # to fit the PyTorch tensor image value range
fuse_weight = torch.eye(k).view(1, 1, k, k) # 1*1*k*k
if self.use_cuda:
fuse_weight = fuse_weight.cuda()
for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups):
'''
O => output channel as a conv filter
I => input channel as a conv filter
xi : separated tensor along batch dimension of front; (B=1, C=128, H=32, W=32)
wi : separated patch tensor along batch dimension of back; (B=1, O=32*32, I=128, KH=3, KW=3)
raw_wi : separated tensor along batch dimension of back; (B=1, I=32*32, O=128, KH=4, KW=4)
'''
# conv for compare
escape_NaN = torch.FloatTensor([1e-4])
if self.use_cuda:
escape_NaN = escape_NaN.cuda()
wi = wi[0] # [L, C, k, k]
max_wi = torch.sqrt(reduce_sum(torch.pow(wi, 2) + escape_NaN, axis=[1, 2, 3], keepdim=True))
wi_normed = wi / max_wi
# xi shape: [1, C, H, W], yi shape: [1, L, H, W]
xi = same_padding(xi, [self.ksize, self.ksize], [1, 1], [1, 1]) # xi: 1*c*H*W
yi = F.conv2d(xi, wi_normed, stride=1) # [1, L, H, W]
# conv implementation for fuse scores to encourage large patches
if self.fuse:
# make all of depth to spatial resolution
yi = yi.view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) # (B=1, I=1, H=32*32, W=32*32)
yi = same_padding(yi, [k, k], [1, 1], [1, 1])
yi = F.conv2d(yi, fuse_weight, stride=1) # (B=1, C=1, H=32*32, W=32*32)
yi = yi.contiguous().view(1, int_bs[2], int_bs[3], int_fs[2], int_fs[3]) # (B=1, 32, 32, 32, 32)
yi = yi.permute(0, 2, 1, 4, 3)
yi = yi.contiguous().view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3])
yi = same_padding(yi, [k, k], [1, 1], [1, 1])
yi = F.conv2d(yi, fuse_weight, stride=1)
yi = yi.contiguous().view(1, int_bs[3], int_bs[2], int_fs[3], int_fs[2])
yi = yi.permute(0, 2, 1, 4, 3).contiguous()
yi = yi.view(1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3]) # (B=1, C=32*32, H=32, W=32)
# softmax to match
yi = yi * mm
yi = F.softmax(yi*scale, dim=1)
yi = yi * mm # [1, L, H, W]
offset = torch.argmax(yi, dim=1, keepdim=True) # 1*1*H*W
if int_bs != int_fs:
# Normalize the offset value to match foreground dimension
times = float(int_fs[2] * int_fs[3]) / float(int_bs[2] * int_bs[3])
offset = ((offset + 1).float() * times - 1).to(torch.int64)
offset = torch.cat([offset//int_fs[3], offset%int_fs[3]], dim=1) # 1*2*H*W
# deconv for patch pasting
wi_center = raw_wi[0]
# yi = F.pad(yi, [0, 1, 0, 1]) # here may need conv_transpose same padding
yi = F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1) / 4. # (B=1, C=128, H=64, W=64)
y.append(yi)
offsets.append(offset)
y = torch.cat(y, dim=0) # back to the mini-batch
y.contiguous().view(raw_int_fs)
offsets = torch.cat(offsets, dim=0)
offsets = offsets.view(int_fs[0], 2, *int_fs[2:])
# case1: visualize optical flow: minus current position
h_add = torch.arange(int_fs[2]).view([1, 1, int_fs[2], 1]).expand(int_fs[0], -1, -1, int_fs[3])
w_add = torch.arange(int_fs[3]).view([1, 1, 1, int_fs[3]]).expand(int_fs[0], -1, int_fs[2], -1)
ref_coordinate = torch.cat([h_add, w_add], dim=1)
if self.use_cuda:
ref_coordinate = ref_coordinate.cuda()
offsets = offsets - ref_coordinate
# flow = pt_flow_to_image(offsets)
flow = torch.from_numpy(flow_to_image(offsets.permute(0, 2, 3, 1).cpu().data.numpy())) / 255.
flow = flow.permute(0, 3, 1, 2)
if self.use_cuda:
flow = flow.cuda()
# case2: visualize which pixels are attended
# flow = torch.from_numpy(highlight_flow((offsets * mask.long()).cpu().data.numpy()))
if self.rate != 1:
flow = F.interpolate(flow, scale_factor=self.rate*4, mode='nearest')
return y, flow
def test_contextual_attention(args):
import cv2
import os
# run on cpu
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
def float_to_uint8(img):
img = img * 255
return img.astype('uint8')
rate = 2
stride = 1
grid = rate*stride
b = default_loader(args.imageA)
w, h = b.size
b = b.resize((w//grid*grid//2, h//grid*grid//2), Image.ANTIALIAS)
# b = b.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS)
print('Size of imageA: {}'.format(b.size))
f = default_loader(args.imageB)
w, h = f.size
f = f.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS)
print('Size of imageB: {}'.format(f.size))
f, b = transforms.ToTensor()(f), transforms.ToTensor()(b)
f, b = f.unsqueeze(0), b.unsqueeze(0)
if torch.cuda.is_available():
f, b = f.cuda(), b.cuda()
contextual_attention = ContextualAttention(ksize=3, stride=stride, rate=rate, fuse=True)
if torch.cuda.is_available():
contextual_attention = contextual_attention.cuda()
yt, flow_t = contextual_attention(f, b)
vutils.save_image(yt, 'vutils' + args.imageOut, normalize=True)
vutils.save_image(flow_t, 'flow' + args.imageOut, normalize=True)
# y = tensor_img_to_npimg(yt.cpu()[0])
# flow = tensor_img_to_npimg(flow_t.cpu()[0])
# cv2.imwrite('flow' + args.imageOut, flow_t)
class LocalDis(nn.Module):
def __init__(self, config, use_cuda=True, device_ids=None):
super(LocalDis, self).__init__()
self.input_dim = config['input_dim']
self.cnum = config['ndf']
self.use_cuda = use_cuda
self.device_ids = device_ids
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum)
self.linear = nn.Linear(self.cnum*4*8*8, 1)
def forward(self, x):
x = self.dis_conv_module(x)
x = x.view(x.size()[0], -1)
x = self.linear(x)
return x
class GlobalDis(nn.Module):
def __init__(self, config, use_cuda=True, device_ids=None):
super(GlobalDis, self).__init__()
self.input_dim = config['input_dim']
self.cnum = config['ndf']
self.use_cuda = use_cuda
self.device_ids = device_ids
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum)
self.linear = nn.Linear(self.cnum*4*16*16, 1)
def forward(self, x):
x = self.dis_conv_module(x)
x = x.view(x.size()[0], -1)
x = self.linear(x)
return x
class DisConvModule(nn.Module):
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
super(DisConvModule, self).__init__()
self.use_cuda = use_cuda
self.device_ids = device_ids
self.conv1 = dis_conv(input_dim, cnum, 5, 2, 2)
self.conv2 = dis_conv(cnum, cnum*2, 5, 2, 2)
self.conv3 = dis_conv(cnum*2, cnum*4, 5, 2, 2)
self.conv4 = dis_conv(cnum*4, cnum*4, 5, 2, 2)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
return x
def gen_conv(input_dim, output_dim, kernel_size=3, stride=1, padding=0, rate=1,
activation='elu'):
return Conv2dBlock(input_dim, output_dim, kernel_size, stride,
conv_padding=padding, dilation=rate,
activation=activation)
def dis_conv(input_dim, output_dim, kernel_size=5, stride=2, padding=0, rate=1,
activation='lrelu'):
return Conv2dBlock(input_dim, output_dim, kernel_size, stride,
conv_padding=padding, dilation=rate,
activation=activation)
class Conv2dBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0,
conv_padding=0, dilation=1, weight_norm='none', norm='none',
activation='relu', pad_type='zero', transpose=False):
super(Conv2dBlock, self).__init__()
self.use_bias = True
# initialize padding
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
elif pad_type == 'none':
self.pad = None
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
if weight_norm == 'sn':
self.weight_norm = spectral_norm_fn
elif weight_norm == 'wn':
self.weight_norm = weight_norm_fn
elif weight_norm == 'none':
self.weight_norm = None
else:
assert 0, "Unsupported normalization: {}".format(weight_norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
# initialize convolution
if transpose:
self.conv = nn.ConvTranspose2d(input_dim, output_dim,
kernel_size, stride,
padding=conv_padding,
output_padding=conv_padding,
dilation=dilation,
bias=self.use_bias)
else:
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride,
padding=conv_padding, dilation=dilation,
bias=self.use_bias)
if self.weight_norm:
self.conv = self.weight_norm(self.conv)
def forward(self, x):
if self.pad:
x = self.conv(self.pad(x))
else:
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--imageA', default='', type=str, help='Image A as background patches to reconstruct image B.')
parser.add_argument('--imageB', default='', type=str, help='Image B is reconstructed with image A.')
parser.add_argument('--imageOut', default='result.png', type=str, help='Image B is reconstructed with image A.')
args = parser.parse_args()
test_contextual_attention(args)