Spaces:
Runtime error
Runtime error
File size: 1,444 Bytes
c61d2bb 265eae6 c61d2bb 19d38a8 d6c38d2 c61d2bb fa250ff c54c05f c61d2bb 22384ee 265eae6 c61d2bb 60daebc b322734 60daebc 5387232 c61d2bb 5387232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from transformers import GPT2Tokenizer, TFGPT2LMHeadModel, pipeline
import gradio as gr
model = TFGPT2LMHeadModel.from_pretrained("egosumkira/gpt2-fantasy")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
story = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0
)
def generate(tags_text, temp, n_beams, max_len):
tags = tags_text.split(", ")
prefix = f"~^{'^'.join(tags)}~@"
g_text = story(prefix, temperature=float(temp), repetition_penalty=7.0, num_beams=int(n_beams), max_length=int(max_len))[0]['generated_text']
return g_text[g_text.find("@") + 1:]
title = "GPT-2 fantasy story generator"
description = 'This is fine-tuned GPT-2 model for "conditional" generation. The model was trained on a custom-made dataset of IMDB plots & keywords.\n' \
'Model page: https://huggingface.co/egosumkira/gpt2-fantasy \n' \
'Notebooks: https://github.com/Agniwald/GPT-2-Fantasy'
iface = gr.Interface(generate,
inputs = [
gr.Textbox(label="Keywords (comma separated)"),
gr.inputs.Slider(0, 2, default=1.0, step=0.05, label="Temperature"),
gr.inputs.Slider(1, 10, default=3, label="Number of beams", step=1),
gr.Number(label="Max lenght", value=128)
],
outputs = gr.Textbox(label="Output"),
title=title,
description=description,
examples=[
["time travel, magic, rescue", 1.0, 3, 128],
["airplane crush", 1.0, 3, 128]
]
)
iface.queue()
iface.launch() |