|
from __future__ import annotations |
|
|
|
import logging |
|
import os |
|
from functools import cached_property |
|
from typing import TYPE_CHECKING, Callable |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from modules import devices, errors, face_restoration, shared |
|
|
|
if TYPE_CHECKING: |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor: |
|
"""Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor.""" |
|
assert img.shape[2] == 3, "image must be RGB" |
|
if img.dtype == "float64": |
|
img = img.astype("float32") |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
return torch.from_numpy(img.transpose(2, 0, 1)).float() |
|
|
|
|
|
def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray: |
|
""" |
|
Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range. |
|
""" |
|
tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) |
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
assert tensor.dim() == 3, "tensor must be RGB" |
|
img_np = tensor.numpy().transpose(1, 2, 0) |
|
if img_np.shape[2] == 1: |
|
return np.squeeze(img_np, axis=2) |
|
return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
def create_face_helper(device) -> FaceRestoreHelper: |
|
from facexlib.detection import retinaface |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
if hasattr(retinaface, 'device'): |
|
retinaface.device = device |
|
return FaceRestoreHelper( |
|
upscale_factor=1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=device, |
|
) |
|
|
|
|
|
def restore_with_face_helper( |
|
np_image: np.ndarray, |
|
face_helper: FaceRestoreHelper, |
|
restore_face: Callable[[torch.Tensor], torch.Tensor], |
|
) -> np.ndarray: |
|
""" |
|
Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image. |
|
|
|
`restore_face` should take a cropped face image and return a restored face image. |
|
""" |
|
from torchvision.transforms.functional import normalize |
|
np_image = np_image[:, :, ::-1] |
|
original_resolution = np_image.shape[0:2] |
|
|
|
try: |
|
logger.debug("Detecting faces...") |
|
face_helper.clean_all() |
|
face_helper.read_image(np_image) |
|
face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) |
|
face_helper.align_warp_face() |
|
logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces)) |
|
for cropped_face in face_helper.cropped_faces: |
|
cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) |
|
|
|
try: |
|
with torch.no_grad(): |
|
cropped_face_t = restore_face(cropped_face_t) |
|
devices.torch_gc() |
|
except Exception: |
|
errors.report('Failed face-restoration inference', exc_info=True) |
|
|
|
restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1)) |
|
restored_face = (restored_face * 255.0).astype('uint8') |
|
face_helper.add_restored_face(restored_face) |
|
|
|
logger.debug("Merging restored faces into image") |
|
face_helper.get_inverse_affine(None) |
|
img = face_helper.paste_faces_to_input_image() |
|
img = img[:, :, ::-1] |
|
if original_resolution != img.shape[0:2]: |
|
img = cv2.resize( |
|
img, |
|
(0, 0), |
|
fx=original_resolution[1] / img.shape[1], |
|
fy=original_resolution[0] / img.shape[0], |
|
interpolation=cv2.INTER_LINEAR, |
|
) |
|
logger.debug("Face restoration complete") |
|
finally: |
|
face_helper.clean_all() |
|
return img |
|
|
|
|
|
class CommonFaceRestoration(face_restoration.FaceRestoration): |
|
net: torch.Module | None |
|
model_url: str |
|
model_download_name: str |
|
|
|
def __init__(self, model_path: str): |
|
super().__init__() |
|
self.net = None |
|
self.model_path = model_path |
|
os.makedirs(model_path, exist_ok=True) |
|
|
|
@cached_property |
|
def face_helper(self) -> FaceRestoreHelper: |
|
return create_face_helper(self.get_device()) |
|
|
|
def send_model_to(self, device): |
|
if self.net: |
|
logger.debug("Sending %s to %s", self.net, device) |
|
self.net.to(device) |
|
if self.face_helper: |
|
logger.debug("Sending face helper to %s", device) |
|
self.face_helper.face_det.to(device) |
|
self.face_helper.face_parse.to(device) |
|
|
|
def get_device(self): |
|
raise NotImplementedError("get_device must be implemented by subclasses") |
|
|
|
def load_net(self) -> torch.Module: |
|
raise NotImplementedError("load_net must be implemented by subclasses") |
|
|
|
def restore_with_helper( |
|
self, |
|
np_image: np.ndarray, |
|
restore_face: Callable[[torch.Tensor], torch.Tensor], |
|
) -> np.ndarray: |
|
try: |
|
if self.net is None: |
|
self.net = self.load_net() |
|
except Exception: |
|
logger.warning("Unable to load face-restoration model", exc_info=True) |
|
return np_image |
|
|
|
try: |
|
self.send_model_to(self.get_device()) |
|
return restore_with_face_helper(np_image, self.face_helper, restore_face) |
|
finally: |
|
if shared.opts.face_restoration_unload: |
|
self.send_model_to(devices.cpu) |
|
|
|
|
|
def patch_facexlib(dirname: str) -> None: |
|
import facexlib.detection |
|
import facexlib.parsing |
|
|
|
det_facex_load_file_from_url = facexlib.detection.load_file_from_url |
|
par_facex_load_file_from_url = facexlib.parsing.load_file_from_url |
|
|
|
def update_kwargs(kwargs): |
|
return dict(kwargs, save_dir=dirname, model_dir=None) |
|
|
|
def facex_load_file_from_url(**kwargs): |
|
return det_facex_load_file_from_url(**update_kwargs(kwargs)) |
|
|
|
def facex_load_file_from_url2(**kwargs): |
|
return par_facex_load_file_from_url(**update_kwargs(kwargs)) |
|
|
|
facexlib.detection.load_file_from_url = facex_load_file_from_url |
|
facexlib.parsing.load_file_from_url = facex_load_file_from_url2 |
|
|