Spaces:
Build error
Build error
Commit
·
43549bc
1
Parent(s):
e22d339
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Audio Craft Hackathon Story Working.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1L2rUzh1qFdVpFOHxLSEPkHACiyQv812n
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install virtualenv
|
11 |
+
!virtualenv venv
|
12 |
+
|
13 |
+
!source venv/bin/activate
|
14 |
+
|
15 |
+
!nvidia-smi
|
16 |
+
|
17 |
+
!pip install --upgrade --quiet pip
|
18 |
+
!pip install --quiet git+https://github.com/huggingface/transformers.git datasets[audio]
|
19 |
+
|
20 |
+
!pip install gTTS
|
21 |
+
!pip install gradio
|
22 |
+
!pip install pydub
|
23 |
+
!pip install nltk
|
24 |
+
!pip install openai
|
25 |
+
!pip install torchaudio
|
26 |
+
|
27 |
+
from transformers import MusicgenForConditionalGeneration
|
28 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
29 |
+
|
30 |
+
import torch
|
31 |
+
|
32 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
33 |
+
model.to(device);
|
34 |
+
|
35 |
+
audio_length_in_s = 256 / model.config.audio_encoder.frame_rate
|
36 |
+
|
37 |
+
audio_length_in_s
|
38 |
+
|
39 |
+
from transformers import AutoProcessor
|
40 |
+
|
41 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
42 |
+
|
43 |
+
from datasets import load_dataset
|
44 |
+
|
45 |
+
dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True)
|
46 |
+
sample = next(iter(dataset))["audio"]
|
47 |
+
sampling_rate = model.config.audio_encoder.sampling_rate
|
48 |
+
# take the first half of the audio sample
|
49 |
+
sample["array"] = sample["array"][: len(sample["array"]) // 2]
|
50 |
+
|
51 |
+
from pydub import AudioSegment
|
52 |
+
import gradio as gr
|
53 |
+
import openai
|
54 |
+
OPENAI_API_KEY = "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"
|
55 |
+
openai.api_key = OPENAI_API_KEY
|
56 |
+
|
57 |
+
def get_story(prompt):
|
58 |
+
try:
|
59 |
+
response = openai.ChatCompletion.create(
|
60 |
+
model="gpt-3.5-turbo",
|
61 |
+
messages=[
|
62 |
+
{"role": "user", "content": f"You are a professional story teller and you will have to write a detailed story. Please Generate a Story about the following {prompt}"},
|
63 |
+
]
|
64 |
+
)
|
65 |
+
response_message = response["choices"][0]["message"]
|
66 |
+
if response_message["role"] == "assistant":
|
67 |
+
return response_message["content"]
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
return str(e)
|
71 |
+
|
72 |
+
def get_music_description(story):
|
73 |
+
try:
|
74 |
+
response = openai.ChatCompletion.create(
|
75 |
+
model="gpt-3.5-turbo",
|
76 |
+
messages=[
|
77 |
+
{"role": "user", "content": f"You are a Audio and you will have to give text descirption for the theme song of a story. Please Generate a Generate One Line Audio Description about the following Story: {story}"},
|
78 |
+
]
|
79 |
+
)
|
80 |
+
response_message = response["choices"][0]["message"]
|
81 |
+
if response_message["role"] == "assistant":
|
82 |
+
return response_message["content"]
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
return str(e)
|
86 |
+
|
87 |
+
import scipy
|
88 |
+
|
89 |
+
sampling_rate = model.config.audio_encoder.sampling_rate
|
90 |
+
|
91 |
+
import numpy as np
|
92 |
+
def get_bgm(prompt):
|
93 |
+
file = "audio.wav"
|
94 |
+
from transformers import AutoProcessor
|
95 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
96 |
+
inputs = processor(
|
97 |
+
text=[prompt,],
|
98 |
+
padding=True,
|
99 |
+
return_tensors="pt",
|
100 |
+
)
|
101 |
+
audio_values = model.generate(**inputs.to(device), do_sample=True, guidance_scale=3, max_new_tokens=256)
|
102 |
+
#scipy.io.wavfile.write(file, rate=sampling_rate, data=,)
|
103 |
+
return sampling_rate,audio_values[0,0].cpu().numpy()
|
104 |
+
|
105 |
+
import requests
|
106 |
+
|
107 |
+
def get_narration(story):
|
108 |
+
file = "narration.mp3"
|
109 |
+
CHUNK_SIZE = 1024
|
110 |
+
url = "https://api.elevenlabs.io/v1/text-to-speech/XB0fDUnXU5powFXDhCwa"
|
111 |
+
headers = {
|
112 |
+
"Accept": "audio/mpeg",
|
113 |
+
"Content-Type": "application/json",
|
114 |
+
"xi-api-key": "7a0e6698796cdcbeaaaabf1a0abcd1ce"
|
115 |
+
}
|
116 |
+
|
117 |
+
data = {
|
118 |
+
"text": story,
|
119 |
+
"model_id": "eleven_monolingual_v1",
|
120 |
+
"voice_settings": {
|
121 |
+
"stability": 0.5,
|
122 |
+
"similarity_boost": 0.5
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
response = requests.post(url, json=data, headers=headers)
|
127 |
+
with open(file, 'wb') as f:
|
128 |
+
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
|
129 |
+
if chunk:
|
130 |
+
f.write(chunk)
|
131 |
+
return file
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
def generate_story_bgs(prompt):
|
136 |
+
story = get_story(prompt)
|
137 |
+
music_des = get_music_description(story)
|
138 |
+
bgm = get_bgm(music_des)
|
139 |
+
narration = get_narration(story)
|
140 |
+
return story , bgm, narration
|
141 |
+
|
142 |
+
iface = gr.Interface(
|
143 |
+
fn=generate_story_bgs,
|
144 |
+
inputs=[gr.inputs.Textbox(type='text', label="What do you want your story to be about?")],
|
145 |
+
outputs=[
|
146 |
+
gr.outputs.Textbox(type='text', label="Story will appear here"),
|
147 |
+
gr.outputs.Audio(type="numpy",label="Theme Music Will Appear here"),
|
148 |
+
gr.outputs.Audio(type="filepath",label="Narration")
|
149 |
+
],
|
150 |
+
live=False
|
151 |
+
)
|
152 |
+
|
153 |
+
iface.queue().launch(share=True, debug=True)
|
154 |
+
|
155 |
+
!pip freeze > requirements.txt
|