ehristoforu's picture
Update app.py
b096473 verified
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF",
filename="fluentlylm-prinum-q4_k_m.gguf",
local_dir="./models"
)
@spaces.GPU(duration=110)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
def create_interface(model_name, description):
return gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=model_name, label="Model", interactive=False),
gr.Textbox(value="You are Fluently, a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
title=f"**FluentlyLM Prinum** ```on ZeroGPU```",
description=description,
chatbot=gr.Chatbot(
label=None,
scale=1,
show_copy_button=True
)
)
description = """# **FluentlyLM Prinum ```on ZeroGPU```"""
interface = create_interface('fluentlylm-prinum-q4_k_m.gguf', description)
demo = gr.Blocks()
with demo:
interface.render()
if __name__ == "__main__":
demo.launch()