Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,126 +1,143 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(
|
23 |
-
model_id,
|
24 |
-
device_map="auto",
|
25 |
-
torch_dtype=torch.bfloat16,
|
26 |
-
)
|
27 |
-
model.eval()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
top_p: float = 0.8,
|
38 |
-
top_k: int = 20,
|
39 |
-
repetition_penalty: float = 1.05,
|
40 |
-
) -> Iterator[str]:
|
41 |
-
messages = []
|
42 |
-
if system_prompt:
|
43 |
-
messages.append({"role": "system", "content": system_prompt})
|
44 |
-
messages.extend(chat_history.copy())
|
45 |
-
messages.append({"role": "user", "content": message})
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
input_ids = input_ids.to(model.device)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
66 |
-
t.start()
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
outputs.append(text)
|
71 |
-
yield "".join(outputs)
|
72 |
|
|
|
73 |
|
74 |
-
demo
|
75 |
-
|
76 |
-
additional_inputs=[
|
77 |
-
gr.Textbox(label="System Prompt", value="You are FluentlyLM, created by Project Fluently. You are a helpful assistant."),
|
78 |
-
gr.Slider(
|
79 |
-
label="Max new tokens",
|
80 |
-
minimum=1,
|
81 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
82 |
-
step=1,
|
83 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
84 |
-
),
|
85 |
-
gr.Slider(
|
86 |
-
label="Temperature",
|
87 |
-
minimum=0.1,
|
88 |
-
maximum=4.0,
|
89 |
-
step=0.1,
|
90 |
-
value=0.65,
|
91 |
-
),
|
92 |
-
gr.Slider(
|
93 |
-
label="Top-p (nucleus sampling)",
|
94 |
-
minimum=0.05,
|
95 |
-
maximum=1.0,
|
96 |
-
step=0.05,
|
97 |
-
value=0.8,
|
98 |
-
),
|
99 |
-
gr.Slider(
|
100 |
-
label="Top-k",
|
101 |
-
minimum=1,
|
102 |
-
maximum=1000,
|
103 |
-
step=1,
|
104 |
-
value=20,
|
105 |
-
),
|
106 |
-
gr.Slider(
|
107 |
-
label="Repetition penalty",
|
108 |
-
minimum=1.0,
|
109 |
-
maximum=2.0,
|
110 |
-
step=0.05,
|
111 |
-
value=1.05,
|
112 |
-
),
|
113 |
-
],
|
114 |
-
stop_btn=None,
|
115 |
-
examples=[
|
116 |
-
["Hi! How are you?"],
|
117 |
-
],
|
118 |
-
cache_examples=False,
|
119 |
-
type="messages",
|
120 |
-
description=DESCRIPTION,
|
121 |
-
css_paths="style.css",
|
122 |
-
fill_height=True,
|
123 |
-
)
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
6 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
7 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
8 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
9 |
+
import gradio as gr
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
+
hf_hub_download(
|
13 |
+
repo_id="fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF",
|
14 |
+
filename="fluentlylm-prinum-q4_k_m.gguf",
|
15 |
+
local_dir="./models"
|
16 |
+
)
|
17 |
|
18 |
+
@spaces.GPU(duration=90)
|
19 |
+
def respond(
|
20 |
+
message,
|
21 |
+
history: list[tuple[str, str]],
|
22 |
+
model,
|
23 |
+
system_message,
|
24 |
+
max_tokens,
|
25 |
+
temperature,
|
26 |
+
top_p,
|
27 |
+
top_k,
|
28 |
+
repeat_penalty,
|
29 |
+
):
|
30 |
+
chat_template = MessagesFormatterType.GEMMA_2
|
31 |
|
32 |
+
llm = Llama(
|
33 |
+
model_path=f"models/{model}",
|
34 |
+
flash_attn=True,
|
35 |
+
n_gpu_layers=81,
|
36 |
+
n_batch=1024,
|
37 |
+
n_ctx=8192,
|
38 |
+
)
|
39 |
+
provider = LlamaCppPythonProvider(llm)
|
40 |
|
41 |
+
agent = LlamaCppAgent(
|
42 |
+
provider,
|
43 |
+
system_prompt=f"{system_message}",
|
44 |
+
predefined_messages_formatter_type=chat_template,
|
45 |
+
debug_output=True
|
46 |
+
)
|
47 |
|
48 |
+
settings = provider.get_provider_default_settings()
|
49 |
+
settings.temperature = temperature
|
50 |
+
settings.top_k = top_k
|
51 |
+
settings.top_p = top_p
|
52 |
+
settings.max_tokens = max_tokens
|
53 |
+
settings.repeat_penalty = repeat_penalty
|
54 |
+
settings.stream = True
|
55 |
|
56 |
+
messages = BasicChatHistory()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
for msn in history:
|
59 |
+
user = {
|
60 |
+
'role': Roles.user,
|
61 |
+
'content': msn[0]
|
62 |
+
}
|
63 |
+
assistant = {
|
64 |
+
'role': Roles.assistant,
|
65 |
+
'content': msn[1]
|
66 |
+
}
|
67 |
+
messages.add_message(user)
|
68 |
+
messages.add_message(assistant)
|
69 |
|
70 |
+
stream = agent.get_chat_response(
|
71 |
+
message,
|
72 |
+
llm_sampling_settings=settings,
|
73 |
+
chat_history=messages,
|
74 |
+
returns_streaming_generator=True,
|
75 |
+
print_output=False
|
76 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
outputs = ""
|
79 |
+
for output in stream:
|
80 |
+
outputs += output
|
81 |
+
yield outputs
|
|
|
82 |
|
83 |
+
def create_interface(model_name, description):
|
84 |
+
return gr.ChatInterface(
|
85 |
+
respond,
|
86 |
+
additional_inputs=[
|
87 |
+
gr.Textbox(value=model_name, label="Model", interactive=False),
|
88 |
+
gr.Textbox(value="You are Fluently, a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness", label="System message"),
|
89 |
+
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
|
90 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
91 |
+
gr.Slider(
|
92 |
+
minimum=0.1,
|
93 |
+
maximum=1.0,
|
94 |
+
value=0.95,
|
95 |
+
step=0.05,
|
96 |
+
label="Top-p",
|
97 |
+
),
|
98 |
+
gr.Slider(
|
99 |
+
minimum=0,
|
100 |
+
maximum=100,
|
101 |
+
value=40,
|
102 |
+
step=1,
|
103 |
+
label="Top-k",
|
104 |
+
),
|
105 |
+
gr.Slider(
|
106 |
+
minimum=0.0,
|
107 |
+
maximum=2.0,
|
108 |
+
value=1.1,
|
109 |
+
step=0.1,
|
110 |
+
label="Repetition penalty",
|
111 |
+
),
|
112 |
+
],
|
113 |
+
retry_btn="Retry",
|
114 |
+
undo_btn="Undo",
|
115 |
+
clear_btn="Clear",
|
116 |
+
submit_btn="Send",
|
117 |
+
title=f"{model_name}",
|
118 |
+
description=description,
|
119 |
+
examples=[
|
120 |
+
["Hi! How are you?",
|
121 |
+
"Write a short story about a scary island.",
|
122 |
+
"Prove that the force of gravity applies to all bodies in the Universe.",
|
123 |
+
"Give examples of how a quantum computer works."
|
124 |
+
],
|
125 |
+
],
|
126 |
+
chatbot=gr.Chatbot(
|
127 |
+
label=None,
|
128 |
+
scale=1,
|
129 |
+
likeable=True,
|
130 |
+
show_copy_button=True
|
131 |
+
)
|
132 |
)
|
|
|
|
|
133 |
|
134 |
+
description = """<h2 align="center"<bold>FluentlyLM Prinum</bold> Demo</h2>"""
|
135 |
+
interface = create_interface('fluentlylm-prinum-q4_k_m.gguf', description)
|
|
|
|
|
136 |
|
137 |
+
demo = gr.Blocks()
|
138 |
|
139 |
+
with demo:
|
140 |
+
interface.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
demo.launch()
|