Spaces:
Running
on
Zero
Running
on
Zero
File size: 47,732 Bytes
c3408ce e522f71 9071247 2b1dd73 3a37af7 2b1dd73 630904b 74d06eb 7b7018c 2b1dd73 884bb4f 169b607 0509eb5 4144cdd 169b607 3a37af7 169b607 884bb4f e522f71 0509eb5 3a37af7 0509eb5 e522f71 169b607 226c3a9 169b607 dbf53c9 e522f71 169b607 226c3a9 169b607 dbf53c9 e522f71 169b607 226c3a9 169b607 e522f71 169b607 226c3a9 169b607 e522f71 6250fb8 e522f71 6250fb8 e522f71 82452b3 7b997f3 0509eb5 169b607 0509eb5 226c3a9 169b607 dbf53c9 7b997f3 897a02d 82452b3 897a02d 169b607 897a02d 82452b3 e522f71 82452b3 e522f71 82452b3 dbf53c9 82452b3 e522f71 e90d194 3a37af7 e90d194 e2a2f56 e90d194 e522f71 a079402 82452b3 6250fb8 63aba14 5053261 63aba14 5053261 63aba14 0509eb5 99e90f5 381b215 e522f71 630904b 637e6a4 630904b 2b1dd73 29da9e6 2b1dd73 630904b 74d06eb 5053261 74d06eb 630904b 5053261 630904b 9071247 c3408ce 630904b 82452b3 63aba14 9071247 82452b3 e522f71 ff65ff7 03b0deb e522f71 9366af3 e522f71 7ed22bc 9071247 82452b3 e522f71 2b1dd73 3a37af7 2b1dd73 3a37af7 2b1dd73 74d06eb 9071247 5053261 3a37af7 5053261 9071247 7b997f3 9071247 82452b3 9071247 0509eb5 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 82452b3 9071247 2b1dd73 3a37af7 9071247 2b1dd73 9071247 3a37af7 2b1dd73 4144cdd 0509eb5 2b1dd73 9071247 7b997f3 9071247 2b1dd73 3a37af7 74d06eb 630904b 2b1dd73 9071247 630904b 74d06eb 9071247 7b997f3 74d06eb 897a02d 0509eb5 897a02d 3a37af7 c3408ce 884bb4f 9071247 0509eb5 9071247 0509eb5 9071247 c3408ce 884bb4f 63aba14 884bb4f 63aba14 630904b 82452b3 9071247 e522f71 5dfc6a4 e522f71 0509eb5 9071247 e90d194 e522f71 630904b 74d06eb e522f71 7b997f3 74d06eb e522f71 c3408ce 9071247 3a37af7 e522f71 3a37af7 e522f71 9071247 e522f71 82452b3 e522f71 3a37af7 e522f71 c3408ce 9071247 3a37af7 c3408ce 3a37af7 c3408ce e522f71 82452b3 74d06eb 9071247 7b997f3 74d06eb 63aba14 7b997f3 e522f71 3a37af7 9071247 e522f71 3a37af7 9071247 e522f71 74d06eb 9071247 7b997f3 e522f71 4144cdd 630904b 4144cdd 9071247 7b997f3 e522f71 6250fb8 630904b c3408ce 1372fa8 4144cdd 1372fa8 7b997f3 630904b 3a37af7 630904b 3a37af7 630904b e522f71 630904b 3a37af7 897a02d 630904b 897a02d 6250fb8 897a02d 74d06eb 897a02d 6250fb8 6115e23 4144cdd 3a37af7 6115e23 63aba14 e522f71 82452b3 e522f71 63aba14 e522f71 63aba14 e522f71 63aba14 e522f71 63aba14 e522f71 63aba14 82452b3 e522f71 4144cdd e522f71 82452b3 e522f71 c3408ce e522f71 7b997f3 e522f71 4144cdd e522f71 74d06eb e522f71 82452b3 169b607 e522f71 82452b3 74d06eb 82452b3 e522f71 3a37af7 9071247 3a37af7 e522f71 6115e23 e522f71 3a37af7 e522f71 9071247 e522f71 169b607 e522f71 9071247 e522f71 63aba14 e522f71 72c217e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 |
import spaces
import os
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import re
from stablepy import (
CONTROLNET_MODEL_IDS,
VALID_TASKS,
T2I_PREPROCESSOR_NAME,
FLASH_LORA,
SCHEDULER_CONFIG_MAP,
scheduler_names,
IP_ADAPTER_MODELS,
IP_ADAPTERS_SD,
IP_ADAPTERS_SDXL,
REPO_IMAGE_ENCODER,
ALL_PROMPT_WEIGHT_OPTIONS,
SD15_TASKS,
SDXL_TASKS,
)
from config import (
DEFAULT_STEPS,
DEFAULT_CFG,
MINIMUM_IMAGE_NUMBER,
MAXIMUM_IMAGE_NUMBER,
DEFAULT_NEGATIVE_PROMPT,
DEFAULT_POSITIVE_PROMPT,
task_stablepy
)
from models.vae import VAE_LIST as download_vae
from models.checkpoints import CHECKPOINT_LIST as download_model
from models.loras import LORA_LIST as download_lora
from models.format_models import FORMAT_MODELS as load_diffusers_format_model
from models.upscaler import upscaler_dict_gui
from models.controlnet import preprocessor_controlnet
from models.embeds import download_embeds
from examples.examples import example_prompts
from utils.download_utils import download_things
from utils.model_utils import get_model_list
import gradio as gr
import logging
from utils.string_utils import extract_parameters
from stablepy import logger
import diffusers
import warnings
from gui import GuiSD
# LOAD ALL ENV TOKEN
CIVITAI_API_KEY: str = os.environ.get("CIVITAI_API_KEY")
hf_token: str = os.environ.get("HF_TOKEN")
task_model_list = list(task_stablepy.keys())
# [Create directories]
directory_models: str = 'models'
os.makedirs(
directory_models,
exist_ok=True
)
directory_loras: str = 'loras'
os.makedirs(
directory_loras,
exist_ok=True
)
directory_vaes: str = 'vaes'
os.makedirs(
directory_vaes,
exist_ok=True
)
directory_embeds: str = 'embedings'
os.makedirs(
directory_embeds,
exist_ok=True
)
# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
download_things(
directory_models,
url,
hf_token,
CIVITAI_API_KEY
)
for url in [url.strip() for url in download_vae.split(',')]:
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
download_things(
directory_vaes,
url,
hf_token,
CIVITAI_API_KEY
)
for url in [url.strip() for url in download_lora.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
download_things(
directory_loras,
url,
hf_token,
CIVITAI_API_KEY
)
for url_embed in download_embeds:
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
download_things(
directory_embeds,
url_embed,
hf_token,
CIVITAI_API_KEY
)
# Build list models
embed_list: list = get_model_list(directory_embeds)
model_list: list = get_model_list(directory_models)
model_list: list = load_diffusers_format_model + model_list
lora_model_list: list = get_model_list(directory_loras)
lora_model_list.insert(0, "None")
vae_model_list: list = get_model_list(directory_vaes)
vae_model_list.insert(0, "None")
def get_my_lora(link_url) -> tuple:
for __url in [_url.strip() for _url in link_url.split(',')]:
if not os.path.exists(f"./loras/{__url.split('/')[-1]}"):
download_things(
directory_loras,
__url,
hf_token,
CIVITAI_API_KEY
)
new_lora_model_list: list = get_model_list(directory_loras)
new_lora_model_list.insert(0, "None")
return gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
)
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
#######################
# GUI
#######################
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
warnings.filterwarnings(
action="ignore",
category=FutureWarning,
module="diffusers"
)
warnings.filterwarnings(
action="ignore",
category=UserWarning,
module="diffusers"
)
warnings.filterwarnings(
action="ignore",
category=FutureWarning,
module="transformers"
)
logger.setLevel(logging.DEBUG)
# init GuiSD
SD_GEN: GuiSD = GuiSD(
model_list=model_list,
task_stablepy=task_stablepy,
lora_model_list=lora_model_list,
embed_list=embed_list,
)
with open("app.css", "r") as f:
CSS: str = f.read()
sdxl_task = [k for k, v in task_stablepy.items() if v in SDXL_TASKS]
sd_task = [k for k, v in task_stablepy.items() if v in SD15_TASKS]
def update_task_options(
model_name: str,
task_name: str):
"""
:param model_name:
:param task_name:
:return:
"""
if model_name in model_list:
if "xl" in model_name.lower():
new_choices = sdxl_task
else:
new_choices = sd_task
if task_name not in new_choices:
task_name = "txt2img"
return gr.update(
value=task_name,
choices=new_choices
)
else:
return gr.update(
value=task_name,
choices=task_model_list
)
# APP
with gr.Blocks(css=CSS, delete_cache=(86400, 86400)) as app:
gr.Markdown("# 🐠 AnyDiffuse")
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=2):
task_gui = gr.Dropdown(
label="Task",
choices=sdxl_task,
value=task_model_list[0],
)
model_name_gui = gr.Dropdown(
label="Model",
choices=model_list,
value="eienmojiki/Anything-XL" or model_list[0],
allow_custom_value=True
)
prompt_gui = gr.Textbox(
lines=5,
placeholder="Enter Positive prompt",
label="Positive Prompt",
value=DEFAULT_POSITIVE_PROMPT
)
neg_prompt_gui = gr.Textbox(
lines=3,
placeholder="Enter Negative prompt",
label="Negative prompt",
value=DEFAULT_NEGATIVE_PROMPT
)
with gr.Row(equal_height=False):
set_params_gui = gr.Button(value="↙️")
clear_prompt_gui = gr.Button(value="🗑️")
set_random_seed = gr.Button(value="🎲")
generate_button = gr.Button(
value="GENERATE",
variant="primary"
)
model_name_gui.change(
update_task_options,
[model_name_gui, task_gui],
[task_gui],
)
load_model_gui = gr.HTML()
result_images = gr.Gallery(
label="Generated images",
format="png",
type="pil",
show_label=False,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
# height="auto",
interactive=False,
selected_index=50,
)
actual_task_info = gr.HTML()
with gr.Column(scale=1):
steps_gui = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=DEFAULT_STEPS,
label="Steps"
)
cfg_gui = gr.Slider(
minimum=0,
maximum=30,
step=0.5,
value=DEFAULT_CFG,
label="CFG"
)
sampler_gui = gr.Dropdown(
label="Sampler",
choices=scheduler_names,
value="DPM++ 2M Karras"
)
img_width_gui = gr.Slider(
minimum=64,
maximum=4096,
step=8,
value=1024,
label="Img Width"
)
img_height_gui = gr.Slider(
minimum=64,
maximum=4096,
step=8,
value=1024,
label="Img Height"
)
seed_gui = gr.Number(
minimum=-1,
maximum=9999999999,
value=-1,
label="Seed"
)
with gr.Row():
clip_skip_gui = gr.Checkbox(
value=False,
label="Layer 2 Clip Skip"
)
free_u_gui = gr.Checkbox(
value=True,
label="FreeU"
)
with gr.Row(equal_height=False):
def run_set_params_gui(base_prompt):
valid_receptors: dict = { # default values
"prompt": gr.update(value=base_prompt),
"neg_prompt": gr.update(value=""),
"Steps": gr.update(value=30),
"width": gr.update(value=1024),
"height": gr.update(value=1024),
"Seed": gr.update(value=-1),
"Sampler": gr.update(value="Euler a"),
"scale": gr.update(value=7.5), # cfg
"skip": gr.update(value=True),
}
valid_keys = list(valid_receptors.keys())
parameters: dict = extract_parameters(base_prompt)
for key, val in parameters.items():
if key in valid_keys:
if key == "Sampler":
if val not in scheduler_names:
continue
elif key == "skip":
if int(val) >= 2:
val = True
if key == "prompt":
if ">" in val and "<" in val:
val = re.sub(r'<[^>]+>', '', val)
print("Removed LoRA written in the prompt")
if key in ["prompt", "neg_prompt"]:
val = val.strip()
if key in ["Steps", "width", "height", "Seed"]:
val = int(val)
if key == "scale":
val = float(val)
if key == "Seed":
continue
valid_receptors[key] = gr.update(value=val)
return [value for value in valid_receptors.values()]
set_params_gui.click(
run_set_params_gui, [prompt_gui], [
prompt_gui,
neg_prompt_gui,
steps_gui,
img_width_gui,
img_height_gui,
seed_gui,
sampler_gui,
cfg_gui,
clip_skip_gui,
],
)
def run_clear_prompt_gui():
return gr.update(value=""), gr.update(value="")
clear_prompt_gui.click(
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
)
def run_set_random_seed():
return -1
set_random_seed.click(
run_set_random_seed, [], seed_gui
)
num_images_gui = gr.Slider(
minimum=MINIMUM_IMAGE_NUMBER,
maximum=MAXIMUM_IMAGE_NUMBER,
step=1,
value=1,
label="Images"
)
prompt_s_options = [
("Classic format: (word:weight)", "Classic"),
("Compel format: (word)weight", "Compel"),
("Classic-original format: (word:weight)", "Classic-original"),
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
("Classic-ignore", "Classic-ignore"),
("None", "None"),
]
prompt_syntax_gui = gr.Dropdown(
label="Prompt Syntax",
choices=prompt_s_options,
value=prompt_s_options[0][1]
)
vae_model_gui = gr.Dropdown(
label="VAE Model",
choices=vae_model_list,
value=vae_model_list[1]
)
with gr.Accordion(
"Hires fix",
open=False,
visible=True):
upscaler_keys = list(upscaler_dict_gui.keys())
upscaler_model_path_gui = gr.Dropdown(
label="Upscaler",
choices=upscaler_keys,
value=upscaler_keys[0]
)
upscaler_increases_size_gui = gr.Slider(
minimum=1.1,
maximum=6.,
step=0.1,
value=1.4,
label="Upscale by"
)
esrgan_tile_gui = gr.Slider(
minimum=0,
value=100,
maximum=500,
step=1,
label="ESRGAN Tile"
)
esrgan_tile_overlap_gui = gr.Slider(
minimum=1,
maximum=200,
step=1,
value=10,
label="ESRGAN Tile Overlap"
)
hires_steps_gui = gr.Slider(
minimum=0,
value=30,
maximum=100,
step=1,
label="Hires Steps"
)
hires_denoising_strength_gui = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.01,
value=0.55,
label="Hires Denoising Strength"
)
hires_sampler_gui = gr.Dropdown(
label="Hires Sampler",
choices=["Use same sampler"] + scheduler_names[:-1],
value="Use same sampler"
)
hires_prompt_gui = gr.Textbox(
label="Hires Prompt",
placeholder="Main prompt will be use",
lines=3
)
hires_negative_prompt_gui = gr.Textbox(
label="Hires Negative Prompt",
placeholder="Main negative prompt will be use",
lines=3
)
with gr.Accordion("LoRA", open=False, visible=True):
lora1_gui = gr.Dropdown(
label="Lora1",
choices=lora_model_list
)
lora_scale_1_gui = gr.Slider(
minimum=-2,
maximum=2,
step=0.01,
value=0.33,
label="Lora Scale 1"
)
lora2_gui = gr.Dropdown(
label="Lora2",
choices=lora_model_list
)
lora_scale_2_gui = gr.Slider(
minimum=-2,
maximum=2,
step=0.01,
value=0.33,
label="Lora Scale 2"
)
lora3_gui = gr.Dropdown(
label="Lora3",
choices=lora_model_list
)
lora_scale_3_gui = gr.Slider(
minimum=-2,
maximum=2,
step=0.01,
value=0.33,
label="Lora Scale 3"
)
lora4_gui = gr.Dropdown(
label="Lora4",
choices=lora_model_list
)
lora_scale_4_gui = gr.Slider(
minimum=-2,
maximum=2,
step=0.01,
value=0.33,
label="Lora Scale 4"
)
lora5_gui = gr.Dropdown(
label="Lora5",
choices=lora_model_list
)
lora_scale_5_gui = gr.Slider(
minimum=-2,
maximum=2,
step=0.01,
value=0.33,
label="Lora Scale 5"
)
with gr.Accordion(
"From URL",
open=False,
visible=True):
text_lora = gr.Textbox(
label="URL",
placeholder="http://...my_lora_url.safetensors",
lines=1
)
button_lora = gr.Button("Get and update lists of LoRAs")
button_lora.click(
get_my_lora,
[text_lora],
[
lora1_gui,
lora2_gui,
lora3_gui,
lora4_gui,
lora5_gui
]
)
with gr.Accordion(
"IP-Adapter",
open=False,
visible=True): # IP-Adapter
IP_MODELS = sorted(
list(
set(
IP_ADAPTERS_SD + IP_ADAPTERS_SDXL
)
)
)
MODE_IP_OPTIONS = [
"original",
"style",
"layout",
"style+layout"
]
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
image_ip1 = gr.Image(
label="IP Image",
type="filepath"
)
mask_ip1 = gr.Image(
label="IP Mask",
type="filepath"
)
model_ip1 = gr.Dropdown(
value="plus_face",
label="Model",
choices=IP_MODELS
)
mode_ip1 = gr.Dropdown(
value="original",
label="Mode",
choices=MODE_IP_OPTIONS
)
scale_ip1 = gr.Slider(
minimum=0.,
maximum=2.,
step=0.01,
value=0.7,
label="Scale"
)
with gr.Accordion("IP-Adapter 2", open=False, visible=True):
image_ip2 = gr.Image(
label="IP Image",
type="filepath"
)
mask_ip2 = gr.Image(
label="IP Mask (optional)",
type="filepath"
)
model_ip2 = gr.Dropdown(
value="base",
label="Model",
choices=IP_MODELS
)
mode_ip2 = gr.Dropdown(
value="style",
label="Mode",
choices=MODE_IP_OPTIONS
)
scale_ip2 = gr.Slider(
minimum=0.,
maximum=2.,
step=0.01,
value=0.7,
label="Scale"
)
with gr.Accordion(
"ControlNet / Img2img / Inpaint",
open=False,
visible=True):
image_control = gr.Image(
label="Image ControlNet/Inpaint/Img2img",
type="filepath"
)
image_mask_gui = gr.Image(
label="Image Mask",
type="filepath"
)
strength_gui = gr.Slider(
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.55,
label="Strength",
info="This option adjusts the level of changes for img2img and inpainting."
)
image_resolution_gui = gr.Slider(
minimum=64,
maximum=2048,
step=64, value=1024,
label="Image Resolution"
)
preprocessor_name_gui = gr.Dropdown(
label="Preprocessor Name",
choices=preprocessor_controlnet["canny"]
)
def change_preprocessor_choices(task):
task = task_stablepy[task]
if task in preprocessor_controlnet.keys():
choices_task = preprocessor_controlnet[task]
else:
choices_task = preprocessor_controlnet["canny"]
return gr.update(
choices=choices_task,
value=choices_task[0]
)
task_gui.change(
change_preprocessor_choices,
[task_gui],
[preprocessor_name_gui],
)
preprocess_resolution_gui = gr.Slider(
minimum=64,
maximum=2048,
step=64,
value=512,
label="Preprocess Resolution"
)
low_threshold_gui = gr.Slider(
minimum=1,
maximum=255,
step=1,
value=100,
label="Canny low threshold"
)
high_threshold_gui = gr.Slider(
minimum=1,
maximum=255,
step=1,
value=200,
label="Canny high threshold"
)
value_threshold_gui = gr.Slider(
minimum=1,
maximum=2.0,
step=0.01, value=0.1,
label="Hough value threshold (MLSD)"
)
distance_threshold_gui = gr.Slider(
minimum=1,
maximum=20.0,
step=0.01,
value=0.1,
label="Hough distance threshold (MLSD)"
)
control_net_output_scaling_gui = gr.Slider(
minimum=0,
maximum=5.0,
step=0.1,
value=1,
label="ControlNet Output Scaling in UNet"
)
control_net_start_threshold_gui = gr.Slider(
minimum=0,
maximum=1,
step=0.01,
value=0,
label="ControlNet Start Threshold (%)"
)
control_net_stop_threshold_gui = gr.Slider(
minimum=0,
maximum=1,
step=0.01,
value=1,
label="ControlNet Stop Threshold (%)"
)
with gr.Accordion(
"T2I adapter",
open=False,
visible=True):
t2i_adapter_preprocessor_gui = gr.Checkbox(
value=True,
label="T2i Adapter Preprocessor"
)
adapter_conditioning_scale_gui = gr.Slider(
minimum=0,
maximum=5.,
step=0.1,
value=1,
label="Adapter Conditioning Scale"
)
adapter_conditioning_factor_gui = gr.Slider(
minimum=0,
maximum=1.,
step=0.01,
value=0.55,
label="Adapter Conditioning Factor (%)"
)
with gr.Accordion(
"Styles",
open=False,
visible=True):
# noinspection PyBroadException
try:
style_names_found = SD_GEN.model.STYLE_NAMES
except Exception as e:
style_names_found = STYLE_NAMES
style_prompt_gui = gr.Dropdown(
style_names_found,
multiselect=True,
value=None,
label="Style Prompt",
interactive=True,
)
style_json_gui = gr.File(label="Style JSON File")
style_button = gr.Button("Load styles")
def load_json_style_file(json):
if not SD_GEN.model:
gr.Info("First load the model")
return gr.update(
value=None,
choices=STYLE_NAMES
)
SD_GEN.model.load_style_file(json)
gr.Info(f"{len(SD_GEN.model.STYLE_NAMES)} styles loaded")
return gr.update(
value=None,
choices=SD_GEN.model.STYLE_NAMES
)
style_button.click(
load_json_style_file,
[style_json_gui],
[style_prompt_gui]
)
with gr.Accordion(
"Textual inversion",
open=False,
visible=False):
active_textual_inversion_gui = gr.Checkbox(
value=False,
label="Active Textual Inversion in prompt"
)
with gr.Accordion(
"Detailfix",
open=False,
visible=True):
# Adetailer Inpaint Only
adetailer_inpaint_only_gui = gr.Checkbox(
label="Inpaint only",
value=True
)
# Adetailer Verbose
adetailer_verbose_gui = gr.Checkbox(
label="Verbose",
value=False
)
# Adetailer Sampler
adetailer_sampler_options = ["Use same sampler"] + scheduler_names[:-1]
adetailer_sampler_gui = gr.Dropdown(
label="Adetailer sampler:",
choices=adetailer_sampler_options,
value="Use same sampler"
)
with gr.Accordion(
"Detailfix A",
open=False,
visible=True):
# Adetailer A
adetailer_active_a_gui = gr.Checkbox(
label="Enable Adetailer A",
value=False
)
prompt_ad_a_gui = gr.Textbox(
label="Main prompt",
placeholder="Main prompt will be use",
lines=3
)
negative_prompt_ad_a_gui = gr.Textbox(
label="Negative prompt",
placeholder="Main negative prompt will be use",
lines=3
)
strength_ad_a_gui = gr.Number(
label="Strength:",
value=0.35, step=0.01,
minimum=0.01,
maximum=1.0
)
face_detector_ad_a_gui = gr.Checkbox(
label="Face detector",
value=True
)
person_detector_ad_a_gui = gr.Checkbox(
label="Person detector",
value=True
)
hand_detector_ad_a_gui = gr.Checkbox(
label="Hand detector",
value=False
)
mask_dilation_a_gui = gr.Number(
label="Mask dilation:",
value=4,
minimum=1
)
mask_blur_a_gui = gr.Number(
label="Mask blur:",
value=4,
minimum=1
)
mask_padding_a_gui = gr.Number(
label="Mask padding:",
value=32,
minimum=1
)
with gr.Accordion(
"Detailfix B",
open=False,
visible=True):
# Adetailer B
adetailer_active_b_gui = gr.Checkbox(
label="Enable Adetailer B",
value=False
)
prompt_ad_b_gui = gr.Textbox(
label="Main prompt",
placeholder="Main prompt will be use",
lines=3
)
negative_prompt_ad_b_gui = gr.Textbox(
label="Negative prompt",
placeholder="Main negative prompt will be use",
lines=3
)
strength_ad_b_gui = gr.Number(
label="Strength:",
value=0.35,
step=0.01,
minimum=0.01,
maximum=1.0
)
face_detector_ad_b_gui = gr.Checkbox(
label="Face detector",
value=True
)
person_detector_ad_b_gui = gr.Checkbox(
label="Person detector",
value=True
)
hand_detector_ad_b_gui = gr.Checkbox(
label="Hand detector",
value=False
)
mask_dilation_b_gui = gr.Number(
label="Mask dilation:",
value=4,
minimum=1
)
mask_blur_b_gui = gr.Number(
label="Mask blur:",
value=4,
minimum=1
)
mask_padding_b_gui = gr.Number(
label="Mask padding:",
value=32,
minimum=1
)
with gr.Accordion(
"Other settings",
open=False,
visible=True):
image_previews_gui = gr.Checkbox(
value=True,
label="Image Previews"
)
hires_before_adetailer_gui = gr.Checkbox(
value=False,
label="Hires Before Adetailer"
)
hires_after_adetailer_gui = gr.Checkbox(
value=True,
label="Hires After Adetailer"
)
generator_in_cpu_gui = gr.Checkbox(
value=False,
label="Generator in CPU"
)
with gr.Accordion(
"More settings",
open=False,
visible=False):
loop_generation_gui = gr.Slider(
minimum=1,
value=1,
label="Loop Generation"
)
retain_task_cache_gui = gr.Checkbox(
value=False,
label="Retain task model in cache"
)
leave_progress_bar_gui = gr.Checkbox(
value=True,
label="Leave Progress Bar"
)
disable_progress_bar_gui = gr.Checkbox(
value=False,
label="Disable Progress Bar"
)
display_images_gui = gr.Checkbox(
value=True,
label="Display Images"
)
save_generated_images_gui = gr.Checkbox(
value=False,
label="Save Generated Images"
)
image_storage_location_gui = gr.Textbox(
value="./images",
label="Image Storage Location"
)
retain_compel_previous_load_gui = gr.Checkbox(
value=False,
label="Retain Compel Previous Load"
)
retain_detail_fix_model_previous_load_gui = gr.Checkbox(
value=False,
label="Retain Detail fix Model Previous Load"
)
retain_hires_model_previous_load_gui = gr.Checkbox(
value=False,
label="Retain Hires Model Previous Load"
)
xformers_memory_efficient_attention_gui = gr.Checkbox(
value=False,
label="Xformers Memory Efficient Attention"
)
# example and Help Section
with gr.Accordion(
"Examples and help",
open=False,
visible=True):
gr.Markdown(
"""### Help:
- The current space runs on a ZERO GPU which is assigned for approximately 60 seconds; Therefore, \
if you submit expensive tasks, the operation may be canceled upon reaching the \
maximum allowed time with 'GPU TASK ABORTED'.
- Distorted or strange images often result from high prompt weights, \
so it's best to use low weights and scales, and consider using Classic variants like 'Classic-original'.
- For better results with Pony Diffusion, \
try using sampler DPM++ 1s or DPM2 with Compel or Classic prompt weights.
"""
)
gr.Markdown(
"""### The following examples perform specific tasks:
1. Generation with SDXL and upscale
2. Generation with SDXL
3. ControlNet Canny SDXL
4. Optical pattern (Optical illusion) SDXL
5. Convert an image to a coloring drawing
6. ControlNet OpenPose SD 1.5
- Different tasks can be performed, such as img2img or using the IP adapter, \
to preserve a person's appearance or a specific style based on an image.
"""
)
gr.Examples(
examples=example_prompts,
fn=SD_GEN.generate_pipeline,
inputs=[
prompt_gui,
neg_prompt_gui,
num_images_gui,
steps_gui,
cfg_gui,
clip_skip_gui,
seed_gui,
lora1_gui,
lora_scale_1_gui,
lora2_gui,
lora_scale_2_gui,
lora3_gui,
lora_scale_3_gui,
lora4_gui,
lora_scale_4_gui,
lora5_gui,
lora_scale_5_gui,
sampler_gui,
img_height_gui,
img_width_gui,
model_name_gui,
vae_model_gui,
task_gui,
image_control,
preprocessor_name_gui,
preprocess_resolution_gui,
image_resolution_gui,
style_prompt_gui,
style_json_gui,
image_mask_gui,
strength_gui,
low_threshold_gui,
high_threshold_gui,
value_threshold_gui,
distance_threshold_gui,
control_net_output_scaling_gui,
control_net_start_threshold_gui,
control_net_stop_threshold_gui,
active_textual_inversion_gui,
prompt_syntax_gui,
upscaler_model_path_gui,
],
outputs=[result_images],
cache_examples=False,
)
with gr.Tab("Inpaint mask maker", render=True):
def create_mask_now(img, invert):
import numpy as np
import time
time.sleep(0.5)
transparent_image = img["layers"][0]
# Extract the alpha channel
alpha_channel = np.array(transparent_image)[:, :, 3]
# Create a binary mask by thresholding the alpha channel
binary_mask = alpha_channel > 1
if invert:
print("Invert")
# Invert the binary mask so that the drawn shape is white and the rest is black
binary_mask = np.invert(binary_mask)
# Convert the binary mask to a 3-channel RGB mask
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
# Convert the mask to uint8
rgb_mask = rgb_mask.astype(np.uint8) * 255
return img["background"], rgb_mask
with gr.Row():
with gr.Column(scale=2):
# image_base = gr.ImageEditor(label="Base image", show_label=True, brush=gr.Brush(colors=["#000000"]))
image_base = gr.ImageEditor(
sources=[
"upload",
"clipboard"
],
# crop_size="1:1",
# enable crop (or disable it)
# transforms=["crop"],
brush=gr.Brush(
default_size="16", # or leave it as 'auto'
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
# default_color="black", # html names are supported
colors=[
"rgba(0, 0, 0, 1)", # rgb(a)
"rgba(0, 0, 0, 0.1)",
"rgba(255, 255, 255, 0.1)",
# "hsl(360, 120, 120)" # in fact any valid colorstring
]
),
eraser=gr.Eraser(default_size="16")
)
invert_mask = gr.Checkbox(
value=False,
label="Invert mask"
)
btn = gr.Button("Create mask")
with gr.Column(scale=1):
img_source = gr.Image(interactive=False)
img_result = gr.Image(
label="Mask image",
show_label=True,
interactive=False
)
btn_send = gr.Button("Send to the first tab")
btn.click(
create_mask_now,
[image_base, invert_mask],
[img_source, img_result]
)
def send_img(img_source, img_result) -> tuple:
return img_source, img_result
btn_send.click(
send_img,
[img_source, img_result],
[image_control, image_mask_gui]
)
generate_button.click(
fn=SD_GEN.load_new_model,
inputs=[
model_name_gui,
vae_model_gui,
task_gui
],
outputs=[load_model_gui],
queue=True,
show_progress="minimal",
).success(
fn=SD_GEN.generate_pipeline,
inputs=[
prompt_gui,
neg_prompt_gui,
num_images_gui,
steps_gui,
cfg_gui,
clip_skip_gui,
seed_gui,
lora1_gui,
lora_scale_1_gui,
lora2_gui,
lora_scale_2_gui,
lora3_gui,
lora_scale_3_gui,
lora4_gui,
lora_scale_4_gui,
lora5_gui,
lora_scale_5_gui,
sampler_gui,
img_height_gui,
img_width_gui,
model_name_gui,
vae_model_gui,
task_gui,
image_control,
preprocessor_name_gui,
preprocess_resolution_gui,
image_resolution_gui,
style_prompt_gui,
style_json_gui,
image_mask_gui,
strength_gui,
low_threshold_gui,
high_threshold_gui,
value_threshold_gui,
distance_threshold_gui,
control_net_output_scaling_gui,
control_net_start_threshold_gui,
control_net_stop_threshold_gui,
active_textual_inversion_gui,
prompt_syntax_gui,
upscaler_model_path_gui,
upscaler_increases_size_gui,
esrgan_tile_gui,
esrgan_tile_overlap_gui,
hires_steps_gui,
hires_denoising_strength_gui,
hires_sampler_gui,
hires_prompt_gui,
hires_negative_prompt_gui,
hires_before_adetailer_gui,
hires_after_adetailer_gui,
loop_generation_gui,
leave_progress_bar_gui,
disable_progress_bar_gui,
image_previews_gui,
display_images_gui,
save_generated_images_gui,
image_storage_location_gui,
retain_compel_previous_load_gui,
retain_detail_fix_model_previous_load_gui,
retain_hires_model_previous_load_gui,
t2i_adapter_preprocessor_gui,
adapter_conditioning_scale_gui,
adapter_conditioning_factor_gui,
xformers_memory_efficient_attention_gui,
free_u_gui,
generator_in_cpu_gui,
adetailer_inpaint_only_gui,
adetailer_verbose_gui,
adetailer_sampler_gui,
adetailer_active_a_gui,
prompt_ad_a_gui,
negative_prompt_ad_a_gui,
strength_ad_a_gui,
face_detector_ad_a_gui,
person_detector_ad_a_gui,
hand_detector_ad_a_gui,
mask_dilation_a_gui,
mask_blur_a_gui,
mask_padding_a_gui,
adetailer_active_b_gui,
prompt_ad_b_gui,
negative_prompt_ad_b_gui,
strength_ad_b_gui,
face_detector_ad_b_gui,
person_detector_ad_b_gui,
hand_detector_ad_b_gui,
mask_dilation_b_gui,
mask_blur_b_gui,
mask_padding_b_gui,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
],
outputs=[
result_images,
actual_task_info
],
queue=True,
show_progress="minimal",
)
app.queue()
app.launch(
show_error=True,
debug=True,
)
|