import spaces
import gc
import os
import torch
import logging
import random
import gradio as gr
import diffusers
from models.upscaler import upscaler_dict_gui
from stablepy import Model_Diffusers
from utils.download_utils import download_things
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
hf_token: str = os.environ.get("HF_TOKEN")
class GuiSD:
def __init__(self,
model_list,
task_stablepy,
lora_model_list,
embed_list,
stream=True):
self.model = None
print("Loading model...")
self.model = Model_Diffusers(
base_model_id="eienmojiki/Anything-XL",
task_name="txt2img",
vae_model="vaes/sdXL_v10VAEFix.safetensors",
type_model_precision=torch.float16,
retain_task_model_in_cache=False,
)
self.model_list = model_list
self.task_stablepy = task_stablepy
self.lora_model_list = lora_model_list
self.embed_list = embed_list
self.stream = stream
def load_new_model(
self,
model_name,
vae_model,
task,
progress=gr.Progress(track_tqdm=True)):
"""
:param model_name:
:param vae_model:
:param task:
:param progress:
"""
yield f"Loading model: {model_name}"
vae_model = vae_model if vae_model != "None" else None
if model_name in self.model_list:
model_is_xl = "xl" in model_name.lower()
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
incompatible_vae = ((
model_is_xl and
vae_model and
not sdxl_in_vae) or
(not model_is_xl and
sdxl_in_vae))
if incompatible_vae:
vae_model = None
self.model.load_pipe(
model_name,
task_name=self.task_stablepy[task],
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=torch.float16,
retain_task_model_in_cache=False,
)
yield f"Model loaded: {model_name}"
@spaces.GPU
def generate_pipeline(
self,
prompt,
neg_prompt,
num_images,
steps,
cfg,
clip_skip,
seed,
lora1,
lora_scale1,
lora2,
lora_scale2,
lora3,
lora_scale3,
lora4,
lora_scale4,
lora5,
lora_scale5,
sampler,
img_height,
img_width,
model_name,
vae_model,
task,
image_control,
preprocessor_name,
preprocess_resolution,
image_resolution,
style_prompt, # list []
style_json_file,
image_mask,
strength,
low_threshold,
high_threshold,
value_threshold,
distance_threshold,
controlnet_output_scaling_in_unet,
controlnet_start_threshold,
controlnet_stop_threshold,
textual_inversion,
syntax_weights,
upscaler_model_path,
upscaler_increases_size,
esrgan_tile,
esrgan_tile_overlap,
hires_steps,
hires_denoising_strength,
hires_sampler,
hires_prompt,
hires_negative_prompt,
hires_before_adetailer,
hires_after_adetailer,
loop_generation,
leave_progress_bar,
disable_progress_bar,
image_previews,
display_images,
save_generated_images,
image_storage_location,
retain_compel_previous_load,
retain_detailfix_model_previous_load,
retain_hires_model_previous_load,
t2i_adapter_preprocessor,
t2i_adapter_conditioning_scale,
t2i_adapter_conditioning_factor,
xformers_memory_efficient_attention,
freeu,
generator_in_cpu,
adetailer_inpaint_only,
adetailer_verbose,
adetailer_sampler,
adetailer_active_a,
prompt_ad_a,
negative_prompt_ad_a,
strength_ad_a,
face_detector_ad_a,
person_detector_ad_a,
hand_detector_ad_a,
mask_dilation_a,
mask_blur_a,
mask_padding_a,
adetailer_active_b,
prompt_ad_b,
negative_prompt_ad_b,
strength_ad_b,
face_detector_ad_b,
person_detector_ad_b,
hand_detector_ad_b,
mask_dilation_b,
mask_blur_b,
mask_padding_b,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2):
vae_model = vae_model if vae_model != "None" else None
loras_list: list = [lora1, lora2, lora3, lora4, lora5]
vae_msg: str = f"VAE: {vae_model}" if vae_model else ""
msg_lora: list = []
if model_name in self.model_list:
model_is_xl = "xl" in model_name.lower()
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
model_type = "SDXL" if model_is_xl else "SD 1.5"
incompatible_vae = ((model_is_xl and
vae_model and
not sdxl_in_vae) or
(not model_is_xl and
sdxl_in_vae))
if incompatible_vae:
msg_inc_vae = (
f"The selected VAE is for a {'SD 1.5' if model_is_xl else 'SDXL'} model, but you"
f" are using a {model_type} model. The default VAE "
"will be used."
)
gr.Info(msg_inc_vae)
vae_msg = msg_inc_vae
vae_model = None
for la in loras_list:
if la is None or la == "None" or la not in self.lora_model_list:
continue
print(la)
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}."
gr.Info(msg_inc_lora)
msg_lora.append(msg_inc_lora)
task = self.task_stablepy[task]
params_ip_img: list = []
params_ip_msk: list = []
params_ip_model: list = []
params_ip_mode: list = []
params_ip_scale: list = []
all_adapters = [
(image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1),
(image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2),
]
for (imgip,
mskip,
modelip,
modeip,
scaleip) in all_adapters:
if imgip:
params_ip_img.append(imgip)
if mskip:
params_ip_msk.append(mskip)
params_ip_model.append(modelip)
params_ip_mode.append(modeip)
params_ip_scale.append(scaleip)
# First load
model_precision = torch.float16
if not self.model:
from modelstream import Model_Diffusers2
print("Loading model...")
self.model = Model_Diffusers2(
base_model_id=model_name,
task_name=task,
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=model_precision,
retain_task_model_in_cache=retain_task_cache_gui,
)
if task != "txt2img" and not image_control:
raise ValueError(
"No control image found: To use this function, "
"you have to upload an image in 'Image ControlNet/Inpaint/Img2img'"
)
if task == "inpaint" and not image_mask:
raise ValueError("No mask image found: Specify one in 'Image Mask'")
if upscaler_model_path in [
None,
"Lanczos",
"Nearest"
]:
upscaler_model = upscaler_model_path
else:
directory_upscalers = 'upscalers'
os.makedirs(
directory_upscalers,
exist_ok=True
)
url_upscaler = upscaler_dict_gui[upscaler_model_path]
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
download_things(
directory_upscalers,
url_upscaler,
# hf_token
)
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
print("Config model:", model_name, vae_model, loras_list)
self.model.load_pipe(
model_name,
task_name=task,
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=model_precision,
retain_task_model_in_cache=retain_task_cache_gui,
)
if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
print("No Textual inversion for SDXL")
adetailer_params_A: dict = {
"face_detector_ad": face_detector_ad_a,
"person_detector_ad": person_detector_ad_a,
"hand_detector_ad": hand_detector_ad_a,
"prompt": prompt_ad_a,
"negative_prompt": negative_prompt_ad_a,
"strength": strength_ad_a,
# "image_list_task" : None,
"mask_dilation": mask_dilation_a,
"mask_blur": mask_blur_a,
"mask_padding": mask_padding_a,
"inpaint_only": adetailer_inpaint_only,
"sampler": adetailer_sampler,
}
adetailer_params_B: dict = {
"face_detector_ad": face_detector_ad_b,
"person_detector_ad": person_detector_ad_b,
"hand_detector_ad": hand_detector_ad_b,
"prompt": prompt_ad_b,
"negative_prompt": negative_prompt_ad_b,
"strength": strength_ad_b,
# "image_list_task" : None,
"mask_dilation": mask_dilation_b,
"mask_blur": mask_blur_b,
"mask_padding": mask_padding_b,
}
pipe_params: dict = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"img_height": img_height,
"img_width": img_width,
"num_images": num_images,
"num_steps": steps,
"guidance_scale": cfg,
"clip_skip": clip_skip,
"seed": seed,
"image": image_control,
"preprocessor_name": preprocessor_name,
"preprocess_resolution": preprocess_resolution,
"image_resolution": image_resolution,
"style_prompt": style_prompt if style_prompt else "",
"style_json_file": "",
"image_mask": image_mask, # only for Inpaint
"strength": strength, # only for Inpaint or ...
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"value_threshold": value_threshold,
"distance_threshold": distance_threshold,
"lora_A": lora1 if lora1 != "None" else None,
"lora_scale_A": lora_scale1,
"lora_B": lora2 if lora2 != "None" else None,
"lora_scale_B": lora_scale2,
"lora_C": lora3 if lora3 != "None" else None,
"lora_scale_C": lora_scale3,
"lora_D": lora4 if lora4 != "None" else None,
"lora_scale_D": lora_scale4,
"lora_E": lora5 if lora5 != "None" else None,
"lora_scale_E": lora_scale5,
"textual_inversion": self.embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [],
"syntax_weights": syntax_weights, # "Classic"
"sampler": sampler,
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
"gui_active": True,
"loop_generation": loop_generation,
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
"control_guidance_start": float(controlnet_start_threshold),
"control_guidance_end": float(controlnet_stop_threshold),
"generator_in_cpu": generator_in_cpu,
"FreeU": freeu,
"adetailer_A": adetailer_active_a,
"adetailer_A_params": adetailer_params_A,
"adetailer_B": adetailer_active_b,
"adetailer_B_params": adetailer_params_B,
"leave_progress_bar": leave_progress_bar,
"disable_progress_bar": disable_progress_bar,
"image_previews": image_previews,
"display_images": display_images,
"save_generated_images": save_generated_images,
"image_storage_location": image_storage_location,
"retain_compel_previous_load": retain_compel_previous_load,
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
"retain_hires_model_previous_load": retain_hires_model_previous_load,
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
"upscaler_model_path": upscaler_model,
"upscaler_increases_size": upscaler_increases_size,
"esrgan_tile": esrgan_tile,
"esrgan_tile_overlap": esrgan_tile_overlap,
"hires_steps": hires_steps,
"hires_denoising_strength": hires_denoising_strength,
"hires_prompt": hires_prompt,
"hires_negative_prompt": hires_negative_prompt,
"hires_sampler": hires_sampler,
"hires_before_adetailer": hires_before_adetailer,
"hires_after_adetailer": hires_after_adetailer,
"ip_adapter_image": params_ip_img,
"ip_adapter_mask": params_ip_msk,
"ip_adapter_model": params_ip_model,
"ip_adapter_mode": params_ip_mode,
"ip_adapter_scale": params_ip_scale,
}
random_number: int = random.randint(1, 100)
if random_number < 25 and num_images < 3:
if (not upscaler_model and
steps < 45 and
task in ["txt2img", "img2img"] and
not adetailer_active_a and
not adetailer_active_b):
num_images *= 2
pipe_params["num_images"] = num_images
gr.Info("Num images x 2 🎉")
# Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!''
self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu")
info_state = f"PROCESSING"
for img, seed, data in self.model(**pipe_params):
info_state += "."
if data:
info_state = f"COMPLETED. Seeds: {str(seed)}"
if vae_msg:
info_state = info_state + "
" + vae_msg
if msg_lora:
info_state = info_state + "
" + "
".join(msg_lora)
yield img, info_state
torch.cuda.empty_cache()
gc.collect()