Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import argparse | |
import os | |
import datetime | |
from diffusers import FluxPipeline | |
from lib_layerdiffuse.pipeline_flux_img2img import FluxImg2ImgPipeline | |
from lib_layerdiffuse.vae import TransparentVAE, pad_rgb | |
import numpy as np | |
from torchvision import transforms | |
from safetensors.torch import load_file | |
from PIL import Image, ImageDraw, ImageFont | |
import spaces | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def seed_everything(seed: int) -> torch.Generator: | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
generator = torch.Generator() | |
generator.manual_seed(seed) | |
return generator | |
t2i_pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16, | |
use_auth_token=HF_TOKEN | |
).to(device) | |
trans_vae = TransparentVAE(t2i_pipe.vae, t2i_pipe.vae.dtype) | |
trans_vae.load_state_dict(torch.load("./models/TransparentVAE.pth"), strict=False) | |
trans_vae.to(device) | |
def t2i_gen( | |
prompt: str, | |
negative_prompt: str = None, | |
seed: int = 1111, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3.5, | |
num_inference_steps: int = 50, | |
): | |
t2i_pipe.load_lora_weights("RedAIGC/Flux-version-LayerDiffuse", weight_name="layerlora.safetensors") | |
latents = t2i_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
generator=seed_everything(seed), | |
guidance_scale=guidance_scale, | |
).images | |
latents = t2i_pipe._unpack_latents(latents, height, width, t2i_pipe.vae_scale_factor) | |
latents = (latents / t2i_pipe.vae.config.scaling_factor) + t2i_pipe.vae.config.shift_factor | |
with torch.no_grad(): | |
original_x, x = trans_vae.decode(latents) | |
x = x.clamp(0, 1) | |
x = x.permute(0, 2, 3, 1) | |
img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0]) | |
torch.cuda.empty_cache() | |
return img |