import gradio as gr import torch import argparse import os import datetime from diffusers import FluxPipeline from lib_layerdiffuse.pipeline_flux_img2img import FluxImg2ImgPipeline from lib_layerdiffuse.vae import TransparentVAE, pad_rgb import numpy as np from torchvision import transforms from safetensors.torch import load_file from PIL import Image, ImageDraw, ImageFont import spaces HF_TOKEN = os.getenv("HF_TOKEN") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def seed_everything(seed: int) -> torch.Generator: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) generator = torch.Generator() generator.manual_seed(seed) return generator t2i_pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN ).to(device) trans_vae = TransparentVAE(t2i_pipe.vae, t2i_pipe.vae.dtype) trans_vae.load_state_dict(torch.load("./models/TransparentVAE.pth"), strict=False) trans_vae.to(device) @spaces.GPU(duration=120) def t2i_gen( prompt: str, negative_prompt: str = None, seed: int = 1111, width: int = 1024, height: int = 1024, guidance_scale: float = 3.5, num_inference_steps: int = 50, ): t2i_pipe.load_lora_weights("RedAIGC/Flux-version-LayerDiffuse", weight_name="layerlora.safetensors") latents = t2i_pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=num_inference_steps, output_type="latent", generator=seed_everything(seed), guidance_scale=guidance_scale, ).images latents = t2i_pipe._unpack_latents(latents, height, width, t2i_pipe.vae_scale_factor) latents = (latents / t2i_pipe.vae.config.scaling_factor) + t2i_pipe.vae.config.shift_factor with torch.no_grad(): original_x, x = trans_vae.decode(latents) x = x.clamp(0, 1) x = x.permute(0, 2, 3, 1) img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0]) torch.cuda.empty_cache() return img