elapt1c's picture
Update app.py
38f501c verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoModel
from huggingface_hub import hf_hub_download
import os
import torch.nn as nn
# ----- Model Definition -----
class CustomDialoGPT(nn.Module):
def __init__(self, vocab_size, n_embd=768, n_head=8, n_layer=8): # <---- FORCE n_embd, n_head, n_layer to match your model
super().__init__()
config = AutoConfig.from_pretrained("microsoft/DialoGPT-medium",
vocab_size=vocab_size,
n_embd=n_embd,
n_head=n_head,
n_layer=n_layer,
bos_token_id=50256,
eos_token_id=50256,
pad_token_id = 50256
)
self.transformer = AutoModelForCausalLM.from_config(config) # Use AutoModelForCausalLM here
self.lm_head = nn.Linear(n_embd, vocab_size, bias=False) # Keep lm_head
def forward(self, input_ids):
transformer_outputs = self.transformer(input_ids=input_ids, output_hidden_states=True)
hidden_states = transformer_outputs.hidden_states[-1] #get last hidden state
logits = self.lm_head(hidden_states)
return logits
# Model and tokenizer details
model_repo = "elapt1c/ElapticAI-1a"
model_filename = "model.pth" # <--- CHECK FILENAME ON HF HUB, UPDATE IF NEEDED!
tokenizer_name = "microsoft/DialoGPT-medium"
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
vocab_size = len(tokenizer) # <---- Define vocab_size AFTER loading tokenizer
# Initialize model with fixed parameters to match checkpoint
n_embd=768
n_head=8
n_layer=8
model = CustomDialoGPT(vocab_size, n_embd, n_head, n_layer).to(device).eval()
# Download and load model weights
try:
pth_filepath = hf_hub_download(repo_id=model_repo, filename=model_filename)
checkpoint = torch.load(pth_filepath, map_location=device)
# Handle different checkpoint saving formats if needed.
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
elif 'state_dict' in checkpoint:
model.load_state_dict(checkpoint['state_dict'])
else:
model.load_state_dict(checkpoint)
print(f"Successfully loaded model weights from {model_repo}/{model_filename}")
except Exception as e:
print(f"Error loading model: {e}")
print("Please ensure the model repository and filename are correct and that the model architecture in app.py matches the checkpoint.")
raise e # It's better to raise the error in a Space, so it's visible.
model.to(device)
model.eval() # Set model to evaluation mode
def chat_with_model(user_input): # Removed history parameter for gr.Text() output
"""Chatbot function to interact with the loaded model - DYNAMIC RESPONSE."""
input_ids = tokenizer.encode(user_input, return_tensors='pt').to(device)
with torch.no_grad():
output = model.transformer.generate(
inputs=input_ids,
max_length=100,
pad_token_id=tokenizer.eos_token_id,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
bot_response = response # No need to split for gr.Text()
print("--- chat_with_model Output ---") # Debugging print
print("user_input:", user_input) # Debugging print
print("bot_response:", bot_response) # Debugging print
print("--- End of chat_with_model Output ---") # Debugging print
return bot_response # Just return bot_response for gr.Text()
iface = gr.Interface( # Changed from gr.ChatInterface to gr.Interface
fn=chat_with_model,
inputs=gr.Textbox(placeholder="Type your message here..."), # Explicitly define inputs as gr.Textbox
outputs=gr.Text(), # Changed outputs to gr.Text()
title="ElapticAI-1a Chatbot - TESTING MODEL RESPONSE", # Updated title
description="Simple chatbot interface for ElapticAI-1a model - TESTING MODEL RESPONSE" # Updated description
)
if __name__ == "__main__":
iface.launch()