File size: 11,134 Bytes
0f888c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from curses import A_ATTRIBUTES

import numpy
import torch
from pip import main
from sentence_transformers import SentenceTransformer, util

# predefined shape text
upper_length_text = [
    'sleeveless', 'without sleeves', 'sleeves have been cut off', 'tank top',
    'tank shirt', 'muscle shirt', 'short-sleeve', 'short sleeves',
    'with short sleeves', 'medium-sleeve', 'medium sleeves',
    'with medium sleeves', 'sleeves reach elbow', 'long-sleeve',
    'long sleeves', 'with long sleeves'
]
upper_length_attr = {
    'sleeveless': 0,
    'without sleeves': 0,
    'sleeves have been cut off': 0,
    'tank top': 0,
    'tank shirt': 0,
    'muscle shirt': 0,
    'short-sleeve': 1,
    'with short sleeves': 1,
    'short sleeves': 1,
    'medium-sleeve': 2,
    'with medium sleeves': 2,
    'medium sleeves': 2,
    'sleeves reach elbow': 2,
    'long-sleeve': 3,
    'long sleeves': 3,
    'with long sleeves': 3
}
lower_length_text = [
    'three-point', 'medium', 'short', 'covering knee', 'cropped',
    'three-quarter', 'long', 'slack', 'of long length'
]
lower_length_attr = {
    'three-point': 0,
    'medium': 1,
    'covering knee': 1,
    'short': 1,
    'cropped': 2,
    'three-quarter': 2,
    'long': 3,
    'slack': 3,
    'of long length': 3
}
socks_length_text = [
    'socks', 'stocking', 'pantyhose', 'leggings', 'sheer hosiery'
]
socks_length_attr = {
    'socks': 0,
    'stocking': 1,
    'pantyhose': 1,
    'leggings': 1,
    'sheer hosiery': 1
}
hat_text = ['hat', 'cap', 'chapeau']
eyeglasses_text = ['sunglasses']
belt_text = ['belt', 'with a dress tied around the waist']
outer_shape_text = [
    'with outer clothing open', 'with outer clothing unzipped',
    'covering inner clothes', 'with outer clothing zipped'
]
outer_shape_attr = {
    'with outer clothing open': 0,
    'with outer clothing unzipped': 0,
    'covering inner clothes': 1,
    'with outer clothing zipped': 1
}

upper_types = [
    'T-shirt', 'shirt', 'sweater', 'hoodie', 'tops', 'blouse', 'Basic Tee'
]
outer_types = [
    'jacket', 'outer clothing', 'coat', 'overcoat', 'blazer', 'outerwear',
    'duffle', 'cardigan'
]
skirt_types = ['skirt']
dress_types = ['dress']
pant_types = ['jeans', 'pants', 'trousers']
rompers_types = ['rompers', 'bodysuit', 'jumpsuit']

attr_names_list = [
    'gender', 'hair length', '0 upper clothing length',
    '1 lower clothing length', '2 socks', '3 hat', '4 eyeglasses', '5 belt',
    '6 opening of outer clothing', '7 upper clothes', '8 outer clothing',
    '9 skirt', '10 dress', '11 pants', '12 rompers'
]


def generate_shape_attributes(user_shape_texts):
    model = SentenceTransformer('all-MiniLM-L6-v2')
    parsed_texts = user_shape_texts.split(',')

    text_num = len(parsed_texts)

    human_attr = [0, 0]
    attr = [1, 3, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0]

    changed = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    for text_id, text in enumerate(parsed_texts):
        user_embeddings = model.encode(text)
        if ('man' in text) and (text_id == 0):
            human_attr[0] = 0
            human_attr[1] = 0

        if ('woman' in text or 'lady' in text) and (text_id == 0):
            human_attr[0] = 1
            human_attr[1] = 2

        if (not changed[0]) and (text_id == 1):
            # upper length
            predefined_embeddings = model.encode(upper_length_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            attr[0] = upper_length_attr[upper_length_text[arg_idx]]
            changed[0] = 1

        if (not changed[1]) and ((text_num == 2 and text_id == 1) or
                                 (text_num > 2 and text_id == 2)):
            # lower length
            predefined_embeddings = model.encode(lower_length_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            attr[1] = lower_length_attr[lower_length_text[arg_idx]]
            changed[1] = 1

        if (not changed[2]) and (text_id > 2):
            # socks length
            predefined_embeddings = model.encode(socks_length_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            if similarities[0][arg_idx] > 0.7:
                attr[2] = arg_idx + 1
                changed[2] = 1

        if (not changed[3]) and (text_id > 2):
            # hat
            predefined_embeddings = model.encode(hat_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            if similarities[0][0] > 0.7:
                attr[3] = 1
                changed[3] = 1

        if (not changed[4]) and (text_id > 2):
            # glasses
            predefined_embeddings = model.encode(eyeglasses_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            if similarities[0][arg_idx] > 0.7:
                attr[4] = arg_idx + 1
                changed[4] = 1

        if (not changed[5]) and (text_id > 2):
            # belt
            predefined_embeddings = model.encode(belt_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            if similarities[0][arg_idx] > 0.7:
                attr[5] = arg_idx + 1
                changed[5] = 1

        if (not changed[6]) and (text_id == 3):
            # outer coverage
            predefined_embeddings = model.encode(outer_shape_text)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            if similarities[0][arg_idx] > 0.7:
                attr[6] = arg_idx
                changed[6] = 1

        if (not changed[10]) and (text_num == 2 and text_id == 1):
            # dress_types
            predefined_embeddings = model.encode(dress_types)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            similarity_skirt = util.dot_score(user_embeddings,
                                              model.encode(skirt_types))
            if similarities[0][0] > 0.5 and similarities[0][
                    0] > similarity_skirt[0][0]:
                attr[10] = 1
                attr[7] = 0
                attr[8] = 0
                attr[9] = 0
                attr[11] = 0
                attr[12] = 0

                changed[0] = 1
                changed[10] = 1
                changed[7] = 1
                changed[8] = 1
                changed[9] = 1
                changed[11] = 1
                changed[12] = 1

        if (not changed[12]) and (text_num == 2 and text_id == 1):
            # rompers_types
            predefined_embeddings = model.encode(rompers_types)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            max_similarity = torch.max(similarities).item()
            if max_similarity > 0.6:
                attr[12] = 1
                attr[7] = 0
                attr[8] = 0
                attr[9] = 0
                attr[10] = 0
                attr[11] = 0

                changed[12] = 1
                changed[7] = 1
                changed[8] = 1
                changed[9] = 1
                changed[10] = 1
                changed[11] = 1

        if (not changed[7]) and (text_num > 2 and text_id == 1):
            # upper_types
            predefined_embeddings = model.encode(upper_types)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            max_similarity = torch.max(similarities).item()
            if max_similarity > 0.6:
                attr[7] = 1
                changed[7] = 1

        if (not changed[8]) and (text_id == 3):
            # outer_types
            predefined_embeddings = model.encode(outer_types)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            arg_idx = torch.argmax(similarities).item()
            if similarities[0][arg_idx] > 0.7:
                attr[6] = outer_shape_attr[outer_shape_text[arg_idx]]
                attr[8] = 1
                changed[8] = 1

        if (not changed[9]) and (text_num > 2 and text_id == 2):
            # skirt_types
            predefined_embeddings = model.encode(skirt_types)
            similarity_skirt = util.dot_score(user_embeddings,
                                              predefined_embeddings)
            similarity_dress = util.dot_score(user_embeddings,
                                              model.encode(dress_types))
            if similarity_skirt[0][0] > 0.7 and similarity_skirt[0][
                    0] > similarity_dress[0][0]:
                attr[9] = 1
                attr[10] = 0
                changed[9] = 1
                changed[10] = 1

        if (not changed[11]) and (text_num > 2 and text_id == 2):
            # pant_types
            predefined_embeddings = model.encode(pant_types)
            similarities = util.dot_score(user_embeddings,
                                          predefined_embeddings)
            max_similarity = torch.max(similarities).item()
            if max_similarity > 0.6:
                attr[11] = 1
                attr[9] = 0
                attr[10] = 0
                attr[12] = 0
                changed[11] = 1
                changed[9] = 1
                changed[10] = 1
                changed[12] = 1

    return human_attr + attr


def generate_texture_attributes(user_text):
    parsed_texts = user_text.split(',')

    attr = []
    for text in parsed_texts:
        if ('pure color' in text) or ('solid color' in text):
            attr.append(4)
        elif ('spline' in text) or ('stripe' in text):
            attr.append(3)
        elif ('plaid' in text) or ('lattice' in text):
            attr.append(5)
        elif 'floral' in text:
            attr.append(1)
        elif 'denim' in text:
            attr.append(0)
        else:
            attr.append(17)

    if len(attr) == 1:
        attr.append(attr[0])
        attr.append(17)

    if len(attr) == 2:
        attr.append(17)

    return attr


if __name__ == "__main__":
    user_request = input('Enter your request: ')
    while user_request != '\\q':
        attr = generate_shape_attributes(user_request)
        print(attr)
        for attr_name, attr_value in zip(attr_names_list, attr):
            print(attr_name, attr_value)
        user_request = input('Enter your request: ')