|
from __future__ import annotations |
|
|
|
import pathlib |
|
import sys |
|
import zipfile |
|
|
|
import huggingface_hub |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
|
|
sys.path.insert(0, 'Text2Human') |
|
|
|
from models.sample_model import SampleFromPoseModel |
|
from utils.language_utils import (generate_shape_attributes, |
|
generate_texture_attributes) |
|
from utils.options import dict_to_nonedict, parse |
|
from utils.util import set_random_seed |
|
|
|
COLOR_LIST = [ |
|
(0, 0, 0), |
|
(255, 250, 250), |
|
(220, 220, 220), |
|
(250, 235, 215), |
|
(255, 250, 205), |
|
(211, 211, 211), |
|
(70, 130, 180), |
|
(127, 255, 212), |
|
(0, 100, 0), |
|
(50, 205, 50), |
|
(255, 255, 0), |
|
(245, 222, 179), |
|
(255, 140, 0), |
|
(255, 0, 0), |
|
(16, 78, 139), |
|
(144, 238, 144), |
|
(50, 205, 174), |
|
(50, 155, 250), |
|
(160, 140, 88), |
|
(213, 140, 88), |
|
(90, 140, 90), |
|
(185, 210, 205), |
|
(130, 165, 180), |
|
(225, 141, 151), |
|
] |
|
|
|
|
|
class Model: |
|
def __init__(self): |
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
self.config = self._load_config() |
|
self.config['device'] = device.type |
|
self._download_models() |
|
self.model = SampleFromPoseModel(self.config) |
|
self.model.batch_size = 1 |
|
|
|
def _load_config(self) -> dict: |
|
path = 'Text2Human/configs/sample_from_pose.yml' |
|
config = parse(path, is_train=False) |
|
config = dict_to_nonedict(config) |
|
return config |
|
|
|
def _download_models(self) -> None: |
|
model_dir = pathlib.Path('pretrained_models') |
|
if model_dir.exists(): |
|
return |
|
path = huggingface_hub.hf_hub_download('yumingj/Text2Human_SSHQ', |
|
'pretrained_models.zip') |
|
model_dir.mkdir() |
|
with zipfile.ZipFile(path) as f: |
|
f.extractall(model_dir) |
|
|
|
@staticmethod |
|
def preprocess_pose_image(image: PIL.Image.Image) -> torch.Tensor: |
|
image = np.array( |
|
image.resize( |
|
size=(256, 512), |
|
resample=PIL.Image.Resampling.LANCZOS))[:, :, 2:].transpose( |
|
2, 0, 1).astype(np.float32) |
|
image = image / 12. - 1 |
|
data = torch.from_numpy(image).unsqueeze(1) |
|
return data |
|
|
|
@staticmethod |
|
def process_mask(mask: np.ndarray) -> np.ndarray: |
|
if mask.shape != (512, 256, 3): |
|
return None |
|
seg_map = np.full(mask.shape[:-1], -1) |
|
for index, color in enumerate(COLOR_LIST): |
|
seg_map[np.sum(mask == color, axis=2) == 3] = index |
|
if not (seg_map != -1).all(): |
|
return None |
|
return seg_map |
|
|
|
@staticmethod |
|
def postprocess(result: torch.Tensor) -> np.ndarray: |
|
result = result.permute(0, 2, 3, 1) |
|
result = result.detach().cpu().numpy() |
|
result = result * 255 |
|
result = np.asarray(result[0, :, :, :], dtype=np.uint8) |
|
return result |
|
|
|
def process_pose_image(self, pose_image: PIL.Image.Image) -> torch.Tensor: |
|
if pose_image is None: |
|
return |
|
data = self.preprocess_pose_image(pose_image) |
|
self.model.feed_pose_data(data) |
|
return data |
|
|
|
def generate_label_image(self, pose_data: torch.Tensor, |
|
shape_text: str) -> np.ndarray: |
|
if pose_data is None: |
|
return |
|
self.model.feed_pose_data(pose_data) |
|
shape_attributes = generate_shape_attributes(shape_text) |
|
shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0) |
|
self.model.feed_shape_attributes(shape_attributes) |
|
self.model.generate_parsing_map() |
|
self.model.generate_quantized_segm() |
|
colored_segm = self.model.palette_result(self.model.segm[0].cpu()) |
|
return colored_segm |
|
|
|
def generate_human(self, label_image: np.ndarray, texture_text: str, |
|
sample_steps: int, seed: int) -> np.ndarray: |
|
if label_image is None: |
|
return |
|
mask = label_image.copy() |
|
seg_map = self.process_mask(mask) |
|
if seg_map is None: |
|
return |
|
self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze( |
|
0).to(self.model.device) |
|
self.model.generate_quantized_segm() |
|
|
|
set_random_seed(seed) |
|
|
|
texture_attributes = generate_texture_attributes(texture_text) |
|
texture_attributes = torch.LongTensor(texture_attributes) |
|
self.model.feed_texture_attributes(texture_attributes) |
|
self.model.generate_texture_map() |
|
|
|
self.model.sample_steps = sample_steps |
|
out = self.model.sample_and_refine() |
|
res = self.postprocess(out) |
|
return res |
|
|