Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize the image classification pipeline
|
5 |
+
pipe = pipeline("image-classification", model="eligapris/v-mdd-2000-150")
|
6 |
+
|
7 |
+
def classify_image(image):
|
8 |
+
# Perform image classification
|
9 |
+
results = pipe(image)
|
10 |
+
|
11 |
+
# Format the results
|
12 |
+
output = ""
|
13 |
+
for result in results:
|
14 |
+
output += f"Label: {result['label']}, Score: {result['score']:.4f}\n"
|
15 |
+
|
16 |
+
return output
|
17 |
+
|
18 |
+
# Create the Gradio interface
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=classify_image,
|
21 |
+
inputs=gr.Image(type="pil"),
|
22 |
+
outputs="text",
|
23 |
+
title="Image Classification",
|
24 |
+
description="Upload an image to classify it using the eligapris/v-mdd-2000-150 model."
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch the app
|
28 |
+
iface.launch(share=True)
|