import gradio as gr from transformers import pipeline # Initialize the image classification pipeline pipe = pipeline("image-classification", model="eligapris/v-mdd-2000-150") def classify_image(image): # Perform image classification results = pipe(image) # Format the results output = "" for result in results: output += f"Label: {result['label']}, Score: {result['score']:.4f}\n" return output # Create the Gradio interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs="text", title="Classifier for Corn Leaf Diseases", description="Upload an image to classify it using the eligapris/v-mdd-2000-150 model." ) # Launch the app iface.launch(share=True)