File size: 7,007 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os

import accelerate
import einops
import huggingface_hub
import torch
import transformers
from jinja2 import Environment, FileSystemLoader

from llm_studio.app_utils.sections.chat import load_cfg_model_tokenizer
from llm_studio.app_utils.utils import hf_repo_friendly_name, save_hf_yaml, set_env
from llm_studio.src.utils.config_utils import NON_GENERATION_PROBLEM_TYPES
from llm_studio.src.utils.modeling_utils import check_disk_space


def get_model_card(cfg, model, repo_id) -> huggingface_hub.ModelCard:
    """
    Method to define the Model Card.

    It is possible to change the language, the library name, and the tags.
    These values will appear in the Model Card tab of Hugging Face.

    Parameters:
        cfg : Configuration parameters for the model card.
        model : The model for which the model card is being generated.
        repo_id : The ID of the target Hugging Face repository.

    Returns:
        huggingface_hub.ModelCard: The Model Card containing model information.
    """
    card_data = huggingface_hub.ModelCardData(
        language="en",
        library_name="transformers",
        tags=["gpt", "llm", "large language model", "h2o-llmstudio"],
    )
    cfg_kwargs = dict(
        use_fast=cfg.tokenizer.use_fast,
        text_prompt_start=cfg.dataset.text_prompt_start,
        text_answer_separator=cfg.dataset.text_answer_separator,
        trust_remote_code=cfg.environment.trust_remote_code,
        end_of_sentence=(
            cfg._tokenizer_eos_token if cfg.dataset.add_eos_token_to_prompt else ""
        ),
    )
    if cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES:
        cfg_kwargs.update(
            dict(
                min_new_tokens=cfg.prediction.min_length_inference,
                max_new_tokens=cfg.prediction.max_length_inference,
                do_sample=cfg.prediction.do_sample,
                num_beams=cfg.prediction.num_beams,
                temperature=cfg.prediction.temperature,
                repetition_penalty=cfg.prediction.repetition_penalty,
            )
        )

    card = huggingface_hub.ModelCard.from_template(
        card_data,
        template_path=os.path.join("model_cards", cfg.environment._model_card_template),
        base_model=cfg.llm_backbone,  # will be replaced in template if it exists
        repo_id=repo_id,
        model_architecture=model.backbone.__repr__(),
        config=cfg.__repr__(),
        transformers_version=transformers.__version__,
        einops_version=einops.__version__,
        accelerate_version=accelerate.__version__,
        torch_version=torch.__version__.split("+")[0],
        **cfg_kwargs,
    )
    return card


def publish_model_to_hugging_face(
    path_to_experiment: str,
    model_name: str,
    user_id: str = None,
    api_key: str = None,
    device: str = "cuda:0",
    safe_serialization: bool = True,
) -> None:
    """
    Method to publish the model to Hugging Face.

    Parameters:
        path_to_experiment: The file path of the fine-tuned model's files.
        device: The target device for running the model, either 'cpu', 'cpu_shard'
            or 'cuda:0'.
        user_id: The Hugging Face user ID.
        api_key: The Hugging Face API Key.
        model_name: The name of the model to be published on Hugging Face.
        safe_serialization: A flag indicating whether safe serialization should be used.

    Returns:
        None. The model is published to the specified Hugging Face repository.
    """

    # Check if the 'device' value is valid, raise an exception if not
    if device == "cpu" or device == "cpu_shard":
        pass  # 'cpu' is a valid value
    elif device.startswith("cuda:") and device[5:].isdigit():
        pass  # 'cuda:integer' format is valid
    else:
        raise ValueError(
            "Invalid device value. Use 'cpu', 'cpu_shard' or 'cuda:INTEGER'."
        )

    with set_env(HUGGINGFACE_TOKEN=api_key):
        cfg, model, tokenizer = load_cfg_model_tokenizer(
            path_to_experiment,
            merge=True,
            device=device,
        )

    check_disk_space(model.backbone, "./")

    # Check if the user is already logged in, and if not, prompt for API key
    if api_key:
        huggingface_hub.login(api_key)

    # If 'user_id' argument is blank, fetch 'user_id' from the logged-in user
    if user_id == "":
        user_id = huggingface_hub.whoami()["name"]

    repo_id = f"{user_id}/{hf_repo_friendly_name(model_name)}"

    # push tokenizer to hub
    tokenizer.push_to_hub(repo_id=repo_id, private=True)

    # push model card to hub
    card = get_model_card(cfg, model, repo_id)
    card.push_to_hub(
        repo_id=repo_id, repo_type="model", commit_message="Upload model card"
    )

    api = huggingface_hub.HfApi()

    # push classification head to hub
    if os.path.isfile(f"{path_to_experiment}/classification_head.pth"):
        api.upload_file(
            path_or_fileobj=f"{path_to_experiment}/classification_head.pth",
            path_in_repo="classification_head.pth",
            repo_id=repo_id,
            repo_type="model",
            commit_message="Upload classification_head.pth",
        )

    # push config to hub
    api.upload_file(
        path_or_fileobj=os.path.join(path_to_experiment, "cfg.yaml"),
        path_in_repo="cfg.yaml",
        repo_id=repo_id,
        repo_type="model",
        commit_message="Upload cfg.yaml",
    )

    # push model to hub
    model.backbone.config.custom_pipelines = {
        "text-generation": {
            "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
            "pt": "AutoModelForCausalLM",
        }
    }

    model.backbone.push_to_hub(
        repo_id=repo_id,
        private=True,
        commit_message="Upload model",
        safe_serialization=safe_serialization,
    )

    # Storing HF attributes
    output_directory = cfg.output_directory
    save_hf_yaml(
        path=f"{output_directory.rstrip('/')}/hf.yaml",
        account_name=user_id,
        model_name=model_name,
        repo_id=repo_id,
    )

    # push pipeline to hub
    template_env = Environment(loader=FileSystemLoader(searchpath="llm_studio/src/"))

    pipeline_template = template_env.get_template("h2oai_pipeline_template.py")

    data = {
        "text_prompt_start": cfg.dataset.text_prompt_start,
        "text_answer_separator": cfg.dataset.text_answer_separator,
    }

    if cfg.dataset.add_eos_token_to_prompt:
        data.update({"end_of_sentence": cfg._tokenizer_eos_token})
    else:
        data.update({"end_of_sentence": ""})

    custom_pipeline = pipeline_template.render(data)

    custom_pipeline_path = os.path.join(path_to_experiment, "h2oai_pipeline.py")

    with open(custom_pipeline_path, "w") as f:
        f.write(custom_pipeline)

    api.upload_file(
        path_or_fileobj=custom_pipeline_path,
        path_in_repo="h2oai_pipeline.py",
        repo_id=repo_id,
        repo_type="model",
        commit_message="Upload h2oai_pipeline.py",
    )