File size: 10,913 Bytes
07423df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
---
description: Learn how to set up LLM Studio.
---
import Tabs from "@theme/Tabs";
import TabItem from "@theme/TabItem";
# Set up H2O LLM Studio
## Prerequisites
H2O LLM Studio requires the following minimum requirements:
- A machine with Ubuntu 16.04+ with atleast one recent Nvidia GPU
- Have at least 128GB+ of system RAM. Larger models and complex tasks may require 256GB+ or more.
- Nvidia drivers v470.57.02 or a later version
- Access to the following URLs:
- developer.download.nvidia.com
- pypi.org
- huggingface.co
- download.pytorch.org
- cdn-lfs.huggingface.co
:::info Notes
- Atleast 24GB of GPU memory is recommended for larger models.
- For more information on performance benchmarks based on the hardware setup, see [H2O LLM Studio performance](llm-studio-performance.md).
- The required URLs are accessible by default when you start a GCP instance, however, if you have network rules or custom firewalls in place, it is recommended to confirm that the URLs are accessible before running `make setup`.
:::
## Installation
:::note Installation methods
<Tabs className="unique-tabs">
<TabItem
value="recommended-install"
label="Linux/Ubuntu installation (recommended)"
default
>
<p>
The recommended way to install H2O LLM Studio is using pipenv with Python
3.10. To install Python 3.10 on Ubuntu 16.04+, execute the following
commands.
</p>
<p>
<b>System installs (Python 3.10)</b>
</p>
<pre>
<code>
sudo add-apt-repository ppa:deadsnakes/ppa <br></br>
sudo apt install python3.10 <br></br>
sudo apt-get install python3.10-distutils <br></br>
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10
</code>
</pre>
<p>
<b>Install NVIDIA drivers (if required)</b>
<br></br>
If you are deploying on a 'bare metal' machine running Ubuntu, you may need
to install the required Nvidia drivers and CUDA. The following commands show
how to retrieve the latest drivers for a machine running Ubuntu 20.04 as an
example. You can update the following based on your respective operating system.
</p>
<pre>
<code>
wget
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin{" "}
<br></br>
sudo mv cuda-ubuntu2004.pin
/etc/apt/preferences.d/cuda-repository-pin-600 <br></br>
wget
https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda-repo-ubuntu2004-11-4-local_11.4.3-470.82.01-1_amd64.deb{" "}
<br></br>
sudo dpkg -i
cuda-repo-ubuntu2004-11-4-local_11.4.3-470.82.01-1_amd64.deb <br></br>
sudo apt-key add /var/cuda-repo-ubuntu2004-11-4-local/7fa2af80.pub <br></br>
sudo apt-get -y update <br></br>
sudo apt-get -y install cuda
</code>
</pre>
<p>
<b>Create virtual environment (pipenv) </b>
<br></br>
The following command creates a virtual environment using pipenv and will install
the dependencies using pipenv.
<pre>
<code>make setup</code>
</pre>
</p>
</TabItem>
<TabItem value="using-requirements" label="Using requirements.txt">
<p>
If you wish to use conda or another virtual environment, you can also
install the dependencies using the <code>requirements.txt</code>{" "}
file.{" "}
</p>
<pre>
<code>pip install -r requirements.txt</code>
</pre>
</TabItem>
<TabItem value="wsl2-install" label="Windows installation" default>
<p>
Follow the steps below to install H2O LLM Studio on a Windows machine
using Windows Subsystem for Linux{" "}
<a href="https://learn.microsoft.com/en-us/windows/wsl/">WSL2</a>
</p>
<p>
1. Download the{" "}
<a href="https://www.nvidia.com/download/index.aspx">
latest nvidia driver
</a>{" "}
for Windows.{" "}
</p>
<p>
2. Open PowerShell or a Windows Command Prompt window in administrator
mode.{" "}
</p>
<p>
3. Run the following command to confirm that the driver is installed
properly and see the driver version.
<pre>
<code>nvidia-smi</code>
</pre>
</p>
<p>
4. Run the following command to install WSL2.
<pre>
<code>wsl --install</code>
</pre>
</p>
<p>5. Launch the WSL2 Ubuntu installation. </p>
<p>
6. Install the{" "}
<a href="https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0">
WSL2 Nvidia Cuda Drivers
</a>
.
<pre>
<code>
wget
https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin{" "}
<br></br>
sudo mv cuda-ubuntu2004.pin
/etc/apt/preferences.d/cuda-repository-pin-600 <br></br>
wget
https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb{" "}
<br></br>
sudo dpkg -i cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb <br></br>
sudo cp /var/cuda-repo-wsl-ubuntu-12-2-local/cuda-*-keyring.gpg
/usr/share/keyrings/ <br></br>
sudo apt-get update <br></br>
sudo apt-get -y install cuda
</code>
</pre>
</p>
<p>
7. Set up the required python system installs (Python 3.10).
<pre>
<code>
sudo add-apt-repository ppa:deadsnakes/ppa <br></br>
sudo apt install python3.10 <br></br>
sudo apt-get install python3.10-distutils <br></br>
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10
</code>
</pre>
</p>
<p>
8. Create the virtual environment.
<pre>
<code>
sudo apt install -y python3.10-venv<br></br>
python3 -m venv llmstudio<br></br>
source llmstudio/bin/activate<br></br>
</code>
</pre>
</p>
<p>
9.Clone the H2O LLM Studio repository locally.
<pre>
<code>
git clone https://github.com/h2oai/h2o-llmstudio.git<br></br>
cd h2o-llmstudio
</code>
</pre>
</p>
<p>
10. Install H2O LLM Studio using the `requirements.txt`.
<pre>
<code>pip install -r requirements.txt</code>
</pre>
</p>
<p>
11. Run the H2O LLM Studio application.
<pre>
<code>
H2O_WAVE_MAX_REQUEST_SIZE=25MB \ <br></br>
H2O_WAVE_NO_LOG=True \ <br></br>
H2O_WAVE_PRIVATE_DIR="/download/@output/download" \ <br></br>
wave run app
</code>
</pre>
</p>
<p>
This will start the H2O Wave server and the H2O LLM Studio app. Navigate
to <a>http://localhost:10101/</a> (we recommend using Chrome) to access
H2O LLM Studio and start fine-tuning your models.
</p>
</TabItem>
</Tabs>
:::
## Install custom package
If required, you can install additional Python packages into your environment. This can be done using pip after activating your virtual environment via `make shell`. For example, to install flash-attention, you would use the following commands:
```bash
make shell
pip install flash-attn --no-build-isolation
pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary
```
Alternatively, you can also directly install the custom package by running the following command.
```bash
pipenv install package_name
```
## Run H2O LLM Studio
There are several ways to run H2O LLM Studio depending on your requirements.
1. [Run H2O LLM Studio GUI](#run-h2o-llm-studio-gui)
2. [Run using Docker from a nightly build](#run-using-docker-from-a-nightly-build)
3. [Run by building your own Docker image](#run-by-building-your-own-docker-image)
4. [Run with the CLI (command-line interface)](#run-with-command-line-interface-cli)
### Run H2O LLM Studio GUI
Run the following command to start the H2O LLM Studio.
```sh
make llmstudio
```
This will start the H2O Wave server and the H2O LLM Studio app. Navigate to [http://localhost:10101/](http://localhost:10101/) (we recommend using Chrome) to access H2O LLM Studio and start fine-tuning your models.
![home-screen](llm-studio-home-screen.png)
If you are running H2O LLM Studio with a custom environment other than Pipenv, start the app as follows:
```sh
H2O_WAVE_APP_ADDRESS=http://127.0.0.1:8756 \
H2O_WAVE_MAX_REQUEST_SIZE=25MB \
H2O_WAVE_NO_LOG=True \
H2O_WAVE_PRIVATE_DIR="/download/@output/download" \
wave run app
```
### Run using Docker from a nightly build
First, install Docker by following the instructions from the [NVIDIA Container Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker). H2O LLM Studio images are stored in the `h2oai GCR vorvan` container repository.
```sh
mkdir -p `pwd`/data
mkdir -p `pwd`/output
docker run \
--runtime=nvidia \
--shm-size=64g \
--init \
--rm \
-p 10101:10101 \
-v `pwd`/data:/workspace/data \
-v `pwd`/output:/workspace/output \
-v ~/.cache:/home/llmstudio/.cache \
gcr.io/vorvan/h2oai/h2o-llmstudio:nightly
```
Navigate to [http://localhost:10101/](http://localhost:10101/) (we recommend using Chrome) to access H2O LLM Studio and start fine-tuning your models.
:::info
Other helpful docker commands are `docker ps` and `docker kill`.
:::
### Run by building your own Docker image
```sh
docker build -t h2o-llmstudio .
docker run \
--runtime=nvidia \
--shm-size=64g \
--init \
--rm \
-p 10101:10101 \
-v `pwd`/data:/workspace/data \
-v `pwd`/output:/workspace/output \
-v ~/.cache:/home/llmstudio/.cache \
h2o-llmstudio
```
### Run with command line interface (CLI)
You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration .yaml file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running `make shell`.
To specify the path to the configuration file that contains the experiment parameters, run:
```sh
python train.py -Y {path_to_config_yaml_file}
```
To run on multiple GPUs in DDP mode, run:
```sh
bash distributed_train.sh {NR_OF_GPUS} -Y {path_to_config_yaml_file}
```
:::info
By default, the framework will run on the first `k` GPUs. If you want to specify specific GPUs to run on, use the `CUDA_VISIBLE_DEVICES` environment variable before the command.
:::
To start an interactive chat with your trained model, run:
```sh
python prompt.py -e {experiment_name}
```
`experiment_name` is the output folder of the experiment you want to chat with. The interactive chat will also work with models that were fine-tuned using the GUI.
|