File size: 61,764 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
import asyncio
import collections
import contextlib
import dataclasses
import glob
import json
import logging
import math
import os
import random
import re
import shutil
import socket
import string
import subprocess
import time
import uuid
import zipfile
from collections import defaultdict
from contextlib import closing
from functools import partial
from typing import Any, DefaultDict, Dict, List, Optional, Tuple, Type, Union

import GPUtil
import numpy as np
import pandas as pd
import psutil
import yaml
from azure.storage.filedatalake import DataLakeServiceClient
from boto3.session import Session
from botocore.handlers import disable_signing
from h2o_wave import Q, ui
from pandas.core.frame import DataFrame
from sqlitedict import SqliteDict

from llm_studio.app_utils.db import Experiment
from llm_studio.src import possible_values
from llm_studio.src.utils.config_utils import (
    _get_type_annotation_error,
    load_config_yaml,
    parse_cfg_dataclass,
    save_config_yaml,
)
from llm_studio.src.utils.data_utils import is_valid_data_frame, read_dataframe
from llm_studio.src.utils.export_utils import get_size_str
from llm_studio.src.utils.type_annotations import KNOWN_TYPE_ANNOTATIONS

from .config import default_cfg

logger = logging.getLogger(__name__)


def get_user_id(q):
    return q.auth.subject


def get_user_name(q):
    return q.auth.username


def get_data_dir(q):
    return os.path.join(default_cfg.llm_studio_workdir, default_cfg.data_folder, "user")


def get_database_dir(q):
    return os.path.join(default_cfg.llm_studio_workdir, default_cfg.data_folder, "dbs")


def get_output_dir(q):
    return os.path.join(
        default_cfg.llm_studio_workdir, default_cfg.output_folder, "user"
    )


def get_download_dir(q):
    return os.path.join(
        default_cfg.llm_studio_workdir, default_cfg.output_folder, "download"
    )


def get_user_db_path(q):
    return os.path.join(get_database_dir(q), "user.db")


def get_usersettings_path(q):
    return os.path.join(get_database_dir(q), f"{get_user_id(q)}.settings")


def find_free_port():
    with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
        s.bind(("", 0))
        s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        return s.getsockname()[1]


def start_process(
    cfg: Any, gpu_list: List, process_queue: List, env_vars: Dict
) -> subprocess.Popen:
    """Starts train.py for a given configuration setting

    Args:
        cfg: config
        gpu_list: list of GPUs to use for the training
        process_queue: list of processes to wait for before starting the training
        env_vars: dictionary of ENV variables to pass to the training process
    Returns:
        Process

    """

    num_gpus = len(gpu_list)
    config_name = os.path.join(cfg.output_directory, "cfg.yaml")
    env = {**os.environ, **env_vars}

    if num_gpus == 0:
        cmd = [
            "python",
            "train_wave.py",
            "-Y",
            config_name,
        ]
    # Do not delete for debug purposes
    # elif num_gpus == 1:
    #     cmd = [
    #         "env",
    #         f"CUDA_VISIBLE_DEVICES={','.join(gpu_list)}",
    #         "python",
    #         "-u",
    #         "train_wave.py",
    #         "-P",
    #         config_name,
    #     ]
    else:
        free_port = find_free_port()
        if cfg.environment.use_deepspeed:
            logger.info("Starting deepspeed...")
            cmd = [
                "env",
                "deepspeed",
                "--include",
                f"localhost:{','.join(gpu_list)}",
                "--master_port",
                f"{str(free_port)}",
                "train_wave.py",
                "-Y",
                config_name,
            ]
        else:
            logger.info("Starting torchrun...")
            cmd = [
                "env",
                f"CUDA_VISIBLE_DEVICES={','.join(gpu_list)}",
                "torchrun",
                f"--nproc_per_node={str(num_gpus)}",
                f"--master_port={str(free_port)}",
                "train_wave.py",
                "-Y",
                config_name,
            ]

    if len(process_queue) > 0:
        cmd.append("-Q")
        cmd.append(",".join([str(x) for x in process_queue]))

    p = subprocess.Popen(
        cmd,
        env=env,
    )

    logger.info(f"Percentage of RAM memory used: {psutil.virtual_memory().percent}")

    return p


def clean_macos_artifacts(path: str) -> None:
    """Cleans artifacts from MacOSX zip archives

    Args:
        path: path to the unzipped directory
    """

    shutil.rmtree(os.path.join(path, "__MACOSX/"), ignore_errors=True)

    for ds_store in glob.glob(os.path.join(path, "**/.DS_Store"), recursive=True):
        try:
            os.remove(ds_store)
        except OSError:
            pass


def s3_session(aws_access_key: str, aws_secret_key: str) -> Any:
    """Establishes s3 session

    Args:
        aws_access_key: s3 access key
        aws_secret_key: s3 secret key

    Returns:
        Session

    """

    session = Session(
        aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key
    )
    s3 = session.resource("s3")
    # if no key is present, disable signing
    if aws_access_key == "" and aws_secret_key == "":
        s3.meta.client.meta.events.register("choose-signer.s3.*", disable_signing)

    return s3


def filter_valid_files(files) -> List[str]:
    valid_files = [
        file
        for file in files
        if any([file.endswith(ext) for ext in default_cfg.allowed_file_extensions])
    ]

    return valid_files


def s3_file_options(
    bucket: str, aws_access_key: str, aws_secret_key: str
) -> Optional[List[str]]:
    """ "Returns all zip files in the target s3 bucket

    Args:
        bucket: s3 bucket name
        aws_access_key: s3 access key
        aws_secret_key: s3 secret key

    Returns:
        List of zip files in bucket or None in case of access error

    """

    try:
        bucket = bucket.replace("s3://", "")
        if bucket[-1] == os.sep:
            bucket = bucket[:-1]

        bucket_split = bucket.split(os.sep)
        bucket = bucket_split[0]
        s3 = s3_session(aws_access_key, aws_secret_key)
        s3_bucket = s3.Bucket(bucket)

        folder = "/".join(bucket_split[1:])

        files = []
        for s3_file in s3_bucket.objects.filter(Prefix=f"{folder}/"):
            if s3_file.key == f"{folder}/":
                continue

            files.append(s3_file.key)

        files = filter_valid_files(files)
        return files

    except Exception as e:
        logger.warning(f"Can't load S3 datasets list: {e}")
        return None


def convert_file_size(size: float):
    """Converts file size to human readable format

    Args:
        size: size in bytes

    Returns:
        size in readable format
    """

    if size == 0:
        return "0B"
    size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
    i = int(math.floor(math.log(size, 1024)))
    p = math.pow(1024, i)
    s = round(size / p, 2)
    return "%.2f %s" % (s, size_name[i])


class S3Progress:
    """Progress update for s3 downloads

    Source:
        https://stackoverflow.com/a/59843153/1281171

    """

    def __init__(self, q: Q, size: float) -> None:
        """Initialize

        Args:
            q: Q
            size: size of the file to download
        """

        self._q: Q = q
        self._size: float = size
        self._seen_so_far: float = 0.0
        self._percentage: float = 0.0

    def progress(self, bytes_amount: float):
        """Update progress

        Args:
            bytes_amount: amount of bytes downloaded
        """

        self._seen_so_far += bytes_amount
        self._percentage = (self._seen_so_far / self._size) * 100.0

    async def update_ui(self):
        """Update progress in UI"""

        self._q.page["meta"].dialog = ui.dialog(
            title="S3 file download in progress",
            blocking=True,
            items=[
                ui.progress(
                    label="Please be patient...",
                    caption=(
                        f"{convert_file_size(self._seen_so_far)} of "
                        f"{convert_file_size(self._size)} "
                        f"({self._percentage:.2f}%)"
                    ),
                    value=self._percentage / 100,
                )
            ],
        )
        await self._q.page.save()

    async def poll(self):
        """Update wave ui"""

        while self._percentage / 100 < 1:
            await self.update_ui()
            await self._q.sleep(0.1)
        await self.update_ui()


def s3_download_coroutine(q, filename):
    download_folder = f"{get_data_dir(q)}/tmp"
    download_folder = get_valid_temp_data_folder(q, download_folder)

    if os.path.exists(download_folder):
        shutil.rmtree(download_folder)
    os.makedirs(download_folder, exist_ok=True)

    downloaded_zip = f"{download_folder}/{filename.split('/')[-1]}"

    q.page["dataset/import"] = ui.form_card(box="content", items=[])
    return downloaded_zip, download_folder


def extract_if_zip(file, actual_path):
    if file.endswith("zip"):
        with zipfile.ZipFile(file, "r") as zip_ref:
            zip_ref.extractall(actual_path)

        os.remove(file)
        clean_macos_artifacts(actual_path)


async def s3_download(
    q, bucket, filename, aws_access_key, aws_secret_key
) -> Tuple[str, str]:
    """Downloads a file from s3

    Args:
        q: Q
        bucket: s3 bucket name
        filename: filename to download
        aws_access_key: s3 access key
        aws_secret_key: s3 secret key

    Returns:
        Download location path
    """
    bucket = bucket.replace("s3://", "")
    if bucket[-1] == os.sep:
        bucket = bucket[:-1]

    bucket = bucket.split(os.sep)[0]

    s3 = s3_session(aws_access_key, aws_secret_key)

    file, s3_path = s3_download_coroutine(q, filename)

    progress = S3Progress(
        q, (s3.meta.client.head_object(Bucket=bucket, Key=filename))["ContentLength"]
    )

    poll_future = asyncio.create_task(progress.poll())

    def download_file():
        s3.Bucket(bucket).download_file(filename, file, Callback=progress.progress)

    await q.run(download_file)
    await poll_future

    extract_if_zip(file, s3_path)

    return s3_path, "".join(filename.split("/")[-1].split(".")[:-1])


def azure_file_options(conn_string: str, container: str) -> List[str]:
    """Returns all zip files in the target azure datalake container

    Args:
        conn_string: connection string
        container: container including sub-paths

    Returns:
        - List of files in storage or empty list in case of access error

    """

    try:
        service_client = DataLakeServiceClient.from_connection_string(  # type: ignore
            conn_string
        )

        container_split = container.split(os.sep)
        container = container_split[0]

        folder = "/".join(container_split[1:])

        file_system_client = service_client.get_file_system_client(
            file_system=container
        )

        files = file_system_client.get_paths(path=folder)
        files = next(files.by_page())  # type: ignore[arg-type]
        files = [x.name for x in files]  # type: ignore[assignment]
        return filter_valid_files(files)

    except Exception as e:
        logger.warning(f"Can't load Azure datasets list: {e}")
        return []


async def download_progress(q, title, seen_so_far, total_len):
    if seen_so_far is not None and total_len is not None:
        percentage = seen_so_far / total_len
        value = percentage
        caption = (
            f"{convert_file_size(seen_so_far)} of "
            f"{convert_file_size(total_len)} "
            f"({percentage * 100:.2f}%)"
        )
    else:
        value = None
        caption = None

    q.page["meta"].dialog = ui.dialog(
        title=title,
        blocking=True,
        items=[ui.progress(label="Please be patient...", caption=caption, value=value)],
    )
    await q.page.save()


async def azure_download(
    q: Any, conn_string: str, container: str, filename: str
) -> Tuple[str, str]:
    """Downloads a file from azure

    Args:
        q: Q
        conn_string: connection string
        container: container
        filename: filename to download

    Returns:
        Download location path
    """

    service_client = DataLakeServiceClient.from_connection_string(  # type: ignore
        conn_string
    )

    container_split = container.split(os.sep)
    container = container_split[0]

    file_system_client = service_client.get_file_system_client(file_system=container)

    filename_split = filename.split(os.sep)
    folder = "/".join(filename_split[:-1])
    filename = filename_split[-1]

    rnd_folder = "".join(random.choice(string.digits) for i in range(10))
    azure_path = f"{get_data_dir(q)}/tmp_{rnd_folder}"
    azure_path = get_valid_temp_data_folder(q, azure_path)

    if os.path.exists(azure_path):
        shutil.rmtree(azure_path)
    os.makedirs(azure_path, exist_ok=True)

    file = f"{azure_path}/{filename}"

    file_client = file_system_client.get_file_client(f"{folder}/{filename}")

    download = file_client.download_file()

    blocks = download.chunks()

    seen_so_far = 0
    with open(file, "wb") as local_file:
        for block in blocks:
            local_file.write(block)

            seen_so_far += len(block)

            await download_progress(
                q,
                "Azure Datalake file download in progress",
                seen_so_far,
                len(blocks),  # type: ignore[arg-type]
            )

    extract_if_zip(file, azure_path)

    return azure_path, "".join(filename.split(".")[:-1])


async def local_download(q: Any, filename: str) -> Tuple[str, str]:
    """Downloads a file from local path

    Args:
        q: Q
        filename: filename to download

    Returns:
        Download location path
    """

    local_path = f"{get_data_dir(q)}/tmp"
    local_path = get_valid_temp_data_folder(q, local_path)

    if os.path.exists(local_path):
        shutil.rmtree(local_path)
    os.makedirs(local_path, exist_ok=True)

    shutil.copy2(filename, local_path)

    zip_file = f"{local_path}/{filename.split('/')[-1]}"
    extract_if_zip(zip_file, local_path)

    return local_path, "".join(filename.split("/")[-1].split(".")[:-1])


async def kaggle_download(
    q: Any, command: str, kaggle_access_key: str, kaggle_secret_key: str
) -> Tuple[str, str]:
    """ "Downloads a file from kaggle

    Args:
        q: Q
        command: kaggle api command
        kaggle_access_key: kaggle access key
        kaggle_secret_key: kaggle secret key

    Returns:
        Download location path
    """

    kaggle_path = f"{get_data_dir(q)}/tmp"
    kaggle_path = get_valid_temp_data_folder(q, kaggle_path)

    if os.path.exists(kaggle_path):
        shutil.rmtree(kaggle_path)
    os.makedirs(kaggle_path, exist_ok=True)

    command_run = []
    if kaggle_access_key != "":
        command_run += ["env", f"KAGGLE_USERNAME={kaggle_access_key}"]
    if kaggle_secret_key != "":
        command_run += ["env", f"KAGGLE_KEY={kaggle_secret_key}"]
    command_run += command.split(" ") + ["-p", kaggle_path]
    subprocess.run(command_run)

    try:
        zip_file = f"{kaggle_path}/{command.split(' ')[-1].split('/')[-1]}.zip"
        with zipfile.ZipFile(zip_file, "r") as zip_ref:
            zip_ref.extractall(kaggle_path)
        os.remove(zip_file)
    except Exception:
        pass

    clean_macos_artifacts(kaggle_path)

    for f in glob.glob(kaggle_path + "/*"):
        if ".zip" in f and zip_file not in f:
            with zipfile.ZipFile(f, "r") as zip_ref:
                zip_ref.extractall(kaggle_path)

            clean_macos_artifacts(kaggle_path)

    return kaggle_path, "".join(command.split(" ")[-1].split("/")[-1])


def clean_error(error: str):
    """Cleans some error messages

    Args:
        error: original error message

    Returns:
        Cleaned error message

    """

    if "UNIQUE constraint failed: datasets.name" in error:
        error = "Dataset name already exists, please choose a different one."
    elif "No such file or directory" in error:
        error = "Import failed."

    return error


def remove_model_type(problem_type: str) -> str:
    """Removes model type from problem type

    Args:
        problem_type: problem type

    Returns:
        Cleaned raw problem type

    """
    if "_config_" in problem_type:
        problem_type = problem_type.split("_config_")[0] + "_config"
    return problem_type


def add_model_type(problem_type: str, model_type: str) -> str:
    """Adds model type to problem type

    Args:
        problem_type: problem type
        model_type: model type

    Returns:
        problem type including model type

    """
    problem_type = remove_model_type(problem_type)
    if model_type != "":
        problem_type = f"{problem_type}_{model_type}"
    return problem_type


def get_problem_categories() -> List[Tuple[str, str]]:
    """Returns all available problem category choices

    Returns:
        List of tuples, each containing the raw problem category name
        and the problem category name as label.
    """

    problem_categories: List[Tuple[str, str]] = []
    for c in default_cfg.problem_categories:
        cc = (c, make_label(c))
        problem_categories.append(cc)
    return problem_categories


def get_problem_types(category: Optional[str] = None) -> List[Tuple[str, str]]:
    """Returns all problem type choices

    Args:
        category: optional category to filter for

    Returns:
        List of tuples, each containing the raw problem type name
        and the problem type name as label.
    """
    problem_types: List[Tuple[str, str]] = []
    for c in default_cfg.problem_types:
        if category is not None and not c.startswith(category):
            continue
        cc = (c, make_label("_".join(c.split("_")[1:]).replace("_config", "")))
        problem_types.append(cc)

    return problem_types


def get_model_types(problem_type: str) -> List[Tuple[str, str]]:
    """Returns all model types for a given problem type

    Args:
        problem_type: problem type name

    Returns:
        List of model types and their labels
    """

    model_types = []
    for c in sorted(os.listdir("llm_studio/python_configs")):
        if "_config_" not in c:
            continue
        if problem_type in c:
            c = c.replace(".py", "").split("_config_")[1]
            model_types.append((c, make_label(c[1:])))

    return model_types


def get_dataset(
    k: str,
    v: Any,
    q: Q,
    limit: Optional[List[str]] = None,
    pre: str = "experiment/start",
) -> Tuple[List[str], Any]:
    """
    Get the dataset and the preliminary default value for a setting.
    The default value may still be overridden by the `possible_values.DatasetValue`
    instances if it is not a valid choice.

    Args:
        k: key for the setting
        v: value for the setting
        q: Q
        limit: list of keys to limit
        pre: prefix for client key

    Returns:
        List of possible values, the preliminary default value.
    """

    if q.client[f"{pre}/dataset"] is None:
        dataset_id = 1
    else:
        dataset_id = int(q.client[f"{pre}/dataset"])

    dataset = q.client.app_db.get_dataset(dataset_id)

    if dataset is None:
        return None, ""

    dataset = dataset.__dict__

    dataset_cfg = load_config_yaml(dataset["config_file"]).dataset.__dict__

    for kk, vv in dataset_cfg.items():
        dataset[kk] = vv

    dataset["dataframe"] = q.client[f"{pre}/cfg/dataframe"]

    if q.client[f"{pre}/cfg_mode/from_dataset"] and (limit is None or k in limit):
        v = dataset[k] if k in dataset else v

    if limit is not None and k not in limit:
        return None, v

    # we need to not reset dataset settings when changing expert mode
    if q.client[f"{pre}/cfg_mode/from_dataset_args"]:
        v = q.client[f"{pre}/cfg/{k}"]

    return dataset, v


def get_ui_element(
    k: str,
    v: Any,
    poss_values: Any,
    type_annotation: Type,
    tooltip: str,
    password: bool,
    trigger: bool,
    q: Q,
    pre: str = "",
) -> Any:
    """Returns a single ui element for a given config entry

    Args:
        k: key
        v: value
        poss_values: possible values
        type_annotation: type annotation
        tooltip: tooltip
        password: flag for whether it is a password
        trigger: flag for triggering the element
        q: Q
        pre: optional prefix for ui key
        get_default: flag for whether to get the default values

    Returns:
        Ui element

    """
    assert type_annotation in KNOWN_TYPE_ANNOTATIONS

    # Overwrite current values with values from yaml
    if pre == "experiment/start/cfg/":
        if q.args["experiment/upload_yaml"] and "experiment/yaml_data" in q.client:
            if (k in q.client["experiment/yaml_data"].keys()) and (
                k != "experiment_name"
            ):
                q.client[pre + k] = q.client["experiment/yaml_data"][k]

    if type_annotation in (int, float):
        if not isinstance(poss_values, possible_values.Number):
            raise ValueError(
                "Type annotations `int` and `float` need a `possible_values.Number`!"
            )

        val = q.client[pre + k] if q.client[pre + k] is not None else v

        min_val = (
            type_annotation(poss_values.min) if poss_values.min is not None else None
        )
        max_val = (
            type_annotation(poss_values.max) if poss_values.max is not None else None
        )

        # Overwrite default maximum values with user_settings
        if f"set_max_{k}" in q.client:
            max_val = q.client[f"set_max_{k}"]

        if isinstance(poss_values.step, (float, int)):
            step_val = type_annotation(poss_values.step)
        elif poss_values.step == "decad" and val < 1:
            step_val = 10 ** -len(str(int(1 / val)))
        else:
            step_val = 1

        if min_val is None or max_val is None:
            t = [
                # TODO: spinbox `trigger` https://github.com/h2oai/wave/pull/598
                ui.spinbox(
                    name=pre + k,
                    label=make_label(k),
                    value=val,
                    # TODO: open issue in wave to make spinbox optionally unbounded
                    max=max_val if max_val is not None else 1e12,
                    min=min_val if min_val is not None else -1e12,
                    step=step_val,
                    tooltip=tooltip,
                )
            ]
        else:
            t = [
                ui.slider(
                    name=pre + k,
                    label=make_label(k),
                    value=val,
                    min=min_val,
                    max=max_val,
                    step=step_val,
                    tooltip=tooltip,
                    trigger=trigger,
                )
            ]
    elif type_annotation == bool:
        val = q.client[pre + k] if q.client[pre + k] is not None else v

        t = [
            ui.toggle(
                name=pre + k,
                label=make_label(k),
                value=val,
                tooltip=tooltip,
                trigger=trigger,
            )
        ]
    elif type_annotation in (str, Tuple[str, ...]):
        if poss_values is None:
            val = q.client[pre + k] if q.client[pre + k] is not None else v

            title_label = make_label(k)

            t = [
                ui.textbox(
                    name=pre + k,
                    label=title_label,
                    value=val,
                    required=False,
                    password=password,
                    tooltip=tooltip,
                    trigger=trigger,
                    multiline=False,
                )
            ]
        else:
            if isinstance(poss_values, possible_values.String):
                options = poss_values.values
                allow_custom = poss_values.allow_custom
                placeholder = poss_values.placeholder
            else:
                options = poss_values
                allow_custom = False
                placeholder = None

            is_tuple = type_annotation == Tuple[str, ...]

            if is_tuple and allow_custom:
                raise TypeError(
                    "Multi-select (`Tuple[str, ...]` type annotation) and"
                    " `allow_custom=True` is not supported at the same time."
                )

            v = q.client[pre + k] if q.client[pre + k] is not None else v
            if isinstance(v, str):
                v = [v]

            # `v` might be a tuple of strings here but Wave only accepts lists
            v = list(v)

            if allow_custom:
                if not all(isinstance(option, str) for option in options):
                    raise ValueError(
                        "Combobox cannot handle (value, name) pairs for options."
                    )

                t = [
                    ui.combobox(
                        name=pre + k,
                        label=make_label(k),
                        value=v[0],
                        choices=(
                            list(options) + v if v not in options else list(options)
                        ),
                        tooltip=tooltip,
                    )
                ]
            else:
                choices = [
                    (
                        ui.choice(option, option)
                        if isinstance(option, str)
                        else ui.choice(option[0], option[1])
                    )
                    for option in options
                ]

                t = [
                    ui.dropdown(
                        name=pre + k,
                        label=make_label(k),
                        value=None if is_tuple else v[0],
                        values=v if is_tuple else None,
                        required=False,
                        choices=choices,
                        tooltip=tooltip,
                        placeholder=placeholder,
                        trigger=trigger,
                    )
                ]

    return t


def get_dataset_elements(cfg: Any, q: Q) -> List:
    """For a given configuration setting return the according dataset ui components.

    Args:
        cfg: configuration settings
        q: Q

    Returns:
        List of ui elements
    """

    cfg_dict = cfg.__dict__
    type_annotations = cfg.get_annotations()

    cfg_dict = {key: cfg_dict[key] for key in cfg._get_order()}

    items = []
    for k, v in cfg_dict.items():
        # Show some fields only during dataset import
        if k.startswith("_") or cfg._get_visibility(k) == -1:
            continue

        if not (
            check_dependencies(
                cfg=cfg, pre="dataset/import", k=k, q=q, dataset_import=True
            )
        ):
            continue
        tooltip = cfg._get_tooltips(k)

        trigger = False
        if k in default_cfg.dataset_trigger_keys or k == "data_format":
            trigger = True

        if type_annotations[k] in KNOWN_TYPE_ANNOTATIONS:
            if k in default_cfg.dataset_keys:
                dataset = cfg_dict.copy()
                dataset["path"] = q.client["dataset/import/path"]

                for kk, vv in q.client["dataset/import/cfg"].__dict__.items():
                    dataset[kk] = vv

                for trigger_key in default_cfg.dataset_trigger_keys:
                    if q.client[f"dataset/import/cfg/{trigger_key}"] is not None:
                        dataset[trigger_key] = q.client[
                            f"dataset/import/cfg/{trigger_key}"
                        ]
                if (
                    q.client["dataset/import/cfg/data_format"] is not None
                    and k == "data_format"
                ):
                    v = q.client["dataset/import/cfg/data_format"]

                dataset["dataframe"] = q.client["dataset/import/cfg/dataframe"]

                type_annotation = type_annotations[k]
                poss_values, v = cfg._get_possible_values(
                    field=k,
                    value=v,
                    type_annotation=type_annotation,
                    mode="train",
                    dataset_fn=lambda k, v: (
                        dataset,
                        dataset[k] if k in dataset else v,
                    ),
                )

                if k == "train_dataframe" and v != "None":
                    q.client["dataset/import/cfg/dataframe"] = read_dataframe(v)

                q.client[f"dataset/import/cfg/{k}"] = v

                t = get_ui_element(
                    k,
                    v,
                    poss_values,
                    type_annotation,
                    tooltip=tooltip,
                    password=False,
                    trigger=trigger,
                    q=q,
                    pre="dataset/import/cfg/",
                )
            else:
                t = []
        elif dataclasses.is_dataclass(v):
            elements_group = get_dataset_elements(cfg=v, q=q)
            t = elements_group
        else:
            raise _get_type_annotation_error(v, type_annotations[k])

        items += t

    return items


def check_dependencies(cfg: Any, pre: str, k: str, q: Q, dataset_import: bool = False):
    """Checks all dependencies for a given key

    Args:
        cfg: configuration settings
        pre: prefix for client keys
        k: key to be checked
        q: Q
        dataset_import: flag whether dependencies are checked in dataset import

    Returns:
        True if dependencies are met
    """

    dependencies = cfg._get_nesting_dependencies(k)

    if dependencies is None:
        dependencies = []
    # Do not respect some nesting during the dataset import
    if dataset_import:
        dependencies = [x for x in dependencies if x.key not in ["validation_strategy"]]
    # Do not respect some nesting during the create experiment
    else:
        dependencies = [x for x in dependencies if x.key not in ["data_format"]]

    if len(dependencies) > 0:
        all_deps = 0
        for d in dependencies:
            if isinstance(q.client[f"{pre}/cfg/{d.key}"], (list, tuple)):
                dependency_values = q.client[f"{pre}/cfg/{d.key}"]
            else:
                dependency_values = [q.client[f"{pre}/cfg/{d.key}"]]

            all_deps += d.check(dependency_values)
        return all_deps == len(dependencies)

    return True


def is_visible(k: str, cfg: Any, q: Q) -> bool:
    """Returns a flag whether a given key should be visible on UI.

    Args:
        k: name of the hyperparameter
        cfg: configuration settings,
        q: Q
    Returns:
        List of ui elements
    """

    visibility = 1

    if visibility < cfg._get_visibility(k):
        return False

    return True


def get_ui_elements(
    cfg: Any,
    q: Q,
    limit: Optional[List[str]] = None,
    pre: str = "experiment/start",
) -> List:
    """For a given configuration setting return the according ui components.

    Args:
        cfg: configuration settings
        q: Q
        limit: optional list of keys to limit
        pre: prefix for client keys
        parent_cfg: parent config class.

    Returns:
        List of ui elements
    """
    items = []

    cfg_dict = cfg.__dict__
    type_annotations = cfg.get_annotations()

    cfg_dict = {key: cfg_dict[key] for key in cfg._get_order()}

    for k, v in cfg_dict.items():
        if "api" in k:
            password = True
        else:
            password = False

        if k.startswith("_") or cfg._get_visibility(k) < 0:
            if q.client[f"{pre}/cfg_mode/from_cfg"]:
                q.client[f"{pre}/cfg/{k}"] = v
            continue
        else:
            type_annotation = type_annotations[k]
            poss_values, v = cfg._get_possible_values(
                field=k,
                value=v,
                type_annotation=type_annotation,
                mode=q.client[f"{pre}/cfg_mode/mode"],
                dataset_fn=partial(get_dataset, q=q, limit=limit, pre=pre),
            )

            if k in default_cfg.dataset_keys:
                # reading dataframe
                if k == "train_dataframe" and (v != ""):
                    q.client[f"{pre}/cfg/dataframe"] = read_dataframe(v, meta_only=True)
                q.client[f"{pre}/cfg/{k}"] = v
            elif k in default_cfg.dataset_extra_keys:
                _, v = get_dataset(k, v, q=q, limit=limit, pre=pre)
                q.client[f"{pre}/cfg/{k}"] = v
            elif q.client[f"{pre}/cfg_mode/from_cfg"]:
                q.client[f"{pre}/cfg/{k}"] = v
        # Overwrite current default values with user_settings
        if q.client[f"{pre}/cfg_mode/from_default"] and f"default_{k}" in q.client:
            q.client[f"{pre}/cfg/{k}"] = q.client[f"default_{k}"]

        if not (check_dependencies(cfg=cfg, pre=pre, k=k, q=q)):
            continue

        if not is_visible(k=k, cfg=cfg, q=q):
            if type_annotation not in KNOWN_TYPE_ANNOTATIONS:
                _ = get_ui_elements(cfg=v, q=q, limit=limit, pre=pre)
            elif q.client[f"{pre}/cfg_mode/from_cfg"]:
                q.client[f"{pre}/cfg/{k}"] = v

            continue

        tooltip = cfg._get_tooltips(k)

        trigger = False
        q.client[f"{pre}/trigger_ks"] = ["train_dataframe"]
        q.client[f"{pre}/trigger_ks"] += cfg._get_nesting_triggers()
        if k in q.client[f"{pre}/trigger_ks"]:
            trigger = True

        if type_annotation in KNOWN_TYPE_ANNOTATIONS:
            if limit is not None and k not in limit:
                continue

            t = get_ui_element(
                k=k,
                v=v,
                poss_values=poss_values,
                type_annotation=type_annotation,
                tooltip=tooltip,
                password=password,
                trigger=trigger,
                q=q,
                pre=f"{pre}/cfg/",
            )
        elif dataclasses.is_dataclass(v):
            if limit is not None and k in limit:
                elements_group = get_ui_elements(cfg=v, q=q, limit=None, pre=pre)
            else:
                elements_group = get_ui_elements(cfg=v, q=q, limit=limit, pre=pre)

            if k == "dataset" and pre != "experiment/start":
                # get all the datasets available
                df_datasets = q.client.app_db.get_datasets_df()
                if not q.client[f"{pre}/dataset"]:
                    if len(df_datasets) >= 1:
                        q.client[f"{pre}/dataset"] = str(df_datasets["id"].iloc[-1])
                    else:
                        q.client[f"{pre}/dataset"] = "1"

                elements_group = [
                    ui.dropdown(
                        name=f"{pre}/dataset",
                        label="Dataset",
                        required=True,
                        value=q.client[f"{pre}/dataset"],
                        choices=[
                            ui.choice(str(row["id"]), str(row["name"]))
                            for _, row in df_datasets.iterrows()
                        ],
                        trigger=True,
                        tooltip=tooltip,
                    )
                ] + elements_group

            if len(elements_group) > 0:
                t = [
                    ui.separator(
                        name=k + "_expander", label=make_label(k, appendix=" settings")
                    )
                ]
            else:
                t = []

            t += elements_group
        else:
            raise _get_type_annotation_error(v, type_annotations[k])

        items += t

    q.client[f"{pre}/prev_dataset"] = q.client[f"{pre}/dataset"]

    return items


def parse_ui_elements(
    cfg: Any, q: Q, limit: Union[List, str] = "", pre: str = ""
) -> Any:
    """Sets configuration settings with arguments from app

    Args:
        cfg: configuration
        q: Q
        limit: optional list of keys to limit
        pre: prefix for keys

    Returns:
        Configuration with settings overwritten from arguments
    """

    cfg_dict = cfg.__dict__
    type_annotations = cfg.get_annotations()
    for k, v in cfg_dict.items():
        if k.startswith("_") or cfg._get_visibility(k) == -1:
            continue

        if (
            len(limit) > 0
            and k not in limit
            and type_annotations[k] in KNOWN_TYPE_ANNOTATIONS
        ):
            continue

        elif type_annotations[k] in KNOWN_TYPE_ANNOTATIONS:
            value = q.client[f"{pre}{k}"]

            if type_annotations[k] == Tuple[str, ...]:
                if isinstance(value, str):
                    value = [value]
                value = tuple(value)
            if isinstance(type_annotations[k], str) and isinstance(value, list):
                # fix for combobox outputting custom values as list in wave 0.22
                value = value[0]
            setattr(cfg, k, value)
        elif dataclasses.is_dataclass(v):
            setattr(cfg, k, parse_ui_elements(cfg=v, q=q, limit=limit, pre=pre))
        else:
            raise _get_type_annotation_error(v, type_annotations[k])

    return cfg


def get_experiment_status(path: str) -> Tuple[str, str]:
    """Get status information from experiment.

    Args:
        path: path to experiment folder
    Returns:
        Tuple of experiment status and experiment info
    """

    try:
        flag_json_path = f"{path}/flags.json"
        if not os.path.exists(flag_json_path):
            logger.debug(f"File {flag_json_path} does not exist yet.")
            return "none", "none"
        with open(flag_json_path) as file:
            flags = json.load(file)
            status = flags.get("status", "none")
            info = flags.get("info", "none")

        # Collect failed statuses from all GPUs
        single_gpu_failures = []
        for flag_json_path in glob.glob(f"{path}/flags?*.json"):
            if os.path.exists(flag_json_path):
                with open(flag_json_path) as file:
                    flags = json.load(file)
                    status = flags.get("status", "none")
                    info = flags.get("info", "none")

                    if status == "failed":
                        single_gpu_failures.append(info)
        # Get the most detailed failure info
        if len(single_gpu_failures) > 0:
            detailed_gpu_failures = [x for x in single_gpu_failures if x != "See logs"]
            if len(detailed_gpu_failures) > 0:
                return "failed", detailed_gpu_failures[0]
            else:
                return "failed", single_gpu_failures[0]
        return status, info

    except Exception:
        logger.debug("Could not get experiment status:", exc_info=True)
        return "none", "none"


def get_experiments_status(df: DataFrame) -> Tuple[List[str], List[str]]:
    """For each experiment in given dataframe, return the status of the process

    Args:
        df: experiment dataframe

    Returns:
        A list with each status and a list with all infos
    """

    status_all = []
    info_all = []
    for idx, row in df.iterrows():
        status, info = get_experiment_status(row.path)

        if info == "none":
            info = ""
        info_all.append(info)

        pid = row.process_id

        zombie = False
        try:
            p = psutil.Process(pid)
            zombie = p.status() == "zombie"
        except psutil.NoSuchProcess:
            pass
        if not psutil.pid_exists(pid) or zombie:
            running = False
        else:
            running = True

        if running:
            if status == "none":
                status_all.append("queued")
            elif status == "running":
                status_all.append("running")
            elif status == "queued":
                status_all.append("queued")
            elif status == "finished":
                status_all.append("finished")
            elif status == "stopped":
                status_all.append("stopped")
            elif status == "failed":
                status_all.append("failed")
            else:
                status_all.append("finished")
        else:
            if status == "none":
                status_all.append("failed")
            elif status == "queued":
                status_all.append("failed")
            elif status == "running":
                status_all.append("failed")
            elif status == "finished":
                status_all.append("finished")
            elif status == "stopped":
                status_all.append("stopped")
            elif status == "failed":
                status_all.append("failed")
            else:
                status_all.append("failed")

    return status_all, info_all


def get_experiments_info(df: DataFrame, q: Q) -> DefaultDict:
    """For each experiment in given dataframe, return certain configuration settings

    Args:
        df: experiment dataframe
        q: Q

    Returns:
        A dictionary of lists of additional information
    """

    info = defaultdict(list)
    for _, row in df.iterrows():
        try:
            # load_config_yaml issues a warning if the yaml file contains keys
            # that are no longer part of the dataclass fields.
            # This can happen if the codebase has changed since the experiment was run.
            # Ignore those warnings here
            logging_level = logging.getLogger().level
            logging.getLogger().setLevel(logging.ERROR)
            cfg = load_config_yaml(f"{row.path}/cfg.yaml").__dict__
            logging.getLogger().setLevel(logging_level)
        except Exception:
            cfg = None

        metric = ""
        loss_function = ""

        if cfg is not None:
            try:
                metric = cfg["prediction"].metric
                loss_function = cfg["training"].loss_function
            except KeyError:
                metric = ""
                loss_function = ""

        with SqliteDict(f"{row.path}/charts.db") as logs:
            if "internal" in logs.keys():
                if "current_step" in logs["internal"].keys():
                    curr_step = int(logs["internal"]["current_step"]["values"][-1])
                else:
                    curr_step = 0

                if "total_training_steps" in logs["internal"].keys():
                    total_training_steps = int(
                        logs["internal"]["total_training_steps"]["values"][-1]
                    )
                else:
                    total_training_steps = 0

                if "current_val_step" in logs["internal"].keys():
                    curr_val_step = int(
                        logs["internal"]["current_val_step"]["values"][-1]
                    )
                else:
                    curr_val_step = 0

                if "total_validation_steps" in logs["internal"].keys():
                    total_validation_steps = int(
                        logs["internal"]["total_validation_steps"]["values"][-1]
                    )
                else:
                    total_validation_steps = 0

                curr_total_step = curr_step + curr_val_step

                total_steps = max(total_training_steps + total_validation_steps, 1)

                if (
                    "global_start_time" in logs["internal"].keys()
                    and curr_total_step > 0
                ):
                    elapsed = (
                        time.time()
                        - logs["internal"]["global_start_time"]["values"][-1]
                    )
                    remaining_steps = total_steps - curr_total_step
                    eta = elapsed * (remaining_steps / curr_total_step)
                    if eta == 0:
                        eta = ""
                    else:
                        # if more than one day, show days
                        # need to subtract 1 day from time_took since strftime shows
                        # day of year which starts counting at 1
                        if eta > 86400:
                            eta = time.strftime(
                                "%-jd %H:%M:%S", time.gmtime(float(eta - 86400))
                            )
                        else:
                            eta = time.strftime("%H:%M:%S", time.gmtime(float(eta)))
                else:
                    eta = "N/A"
            else:
                eta = "N/A"
                total_steps = 1
                curr_total_step = 0

            if (
                "validation" in logs
                and metric in logs["validation"]
                and logs["validation"][metric]["values"][-1] is not None
            ):
                score_val = np.round(logs["validation"][metric]["values"][-1], 4)
            else:
                score_val = ""

        try:
            dataset = q.client.app_db.get_dataset(row.dataset).name
        except Exception:
            dataset = ""

        config_file = make_config_label(row.config_file)

        info["config_file"].append(config_file)
        info["dataset"].append(dataset)
        info["loss"].append(loss_function)
        info["metric"].append(metric)
        info["eta"].append(eta)
        info["val metric"].append(score_val)
        info["progress"].append(f"{np.round(curr_total_step / total_steps, 2)}")

        del cfg

    return info


def make_config_label(config_file: str) -> str:
    """Makes a label from a config file name

    Args:
        config_file: config file name

    Returns:
        Label
    """

    config_file = config_file.replace(".yaml", "")
    if "_config_" in config_file:
        config_file_split = config_file.split("_config_")
        config_file = (
            f"{make_label(config_file_split[0])} "
            f"({make_label(config_file_split[1][1:])})"
        )
    else:
        config_file = make_label(config_file.replace("_config", ""))

    return config_file


def get_datasets_info(df: DataFrame, q: Q) -> Tuple[DataFrame, DefaultDict]:
    """For each dataset in given dataframe, return certain configuration settings

    Args:
        df: dataset dataframe
        q: Q

    Returns:
        A dictionary of lists of additional information
    """

    info = defaultdict(list)
    for idx, row in df.iterrows():
        config_file = q.client.app_db.get_dataset(row.id).config_file
        path = row.path + "/"

        try:
            logging_level = logging.getLogger().level
            logging.getLogger().setLevel(logging.ERROR)
            cfg = load_config_yaml(config_file)
            logging.getLogger().setLevel(logging_level)
        except Exception as e:
            logger.warning(f"Could not load configuration from {config_file}. {e}")
            cfg = None

        if cfg is not None:
            cfg_dataset = cfg.dataset.__dict__

            config_file = make_config_label(row.config_file.replace(path, ""))

            info["problem type"].append(config_file)
            info["train dataframe"].append(
                cfg_dataset["train_dataframe"].replace(path, "")
            )
            info["validation dataframe"].append(
                cfg_dataset["validation_dataframe"].replace(path, "")
            )

            info["labels"].append(cfg.dataset.answer_column)

            del cfg, cfg_dataset
        else:
            df = df.drop(idx)

    return df, info


def get_experiments(
    q: Q,
    status: Union[Optional[str], Optional[List[str]]] = None,
    mode: Optional[str] = None,
) -> pd.DataFrame:
    """Return all experiments given certain restrictions

    Args:
        q: Q
        status: option to filter for certain experiment status
        mode: option to filter for certain experiment mode
    Returns:
        experiment df
    """

    df = q.client.app_db.get_experiments_df()

    info = get_experiments_info(df, q)
    for k, v in info.items():
        df[k] = v

    df["status"], df["info"] = get_experiments_status(df)

    if status is not None:
        if type(status) is str:
            status = [status]
        df = df[df["status"].isin(status)]

    if mode is not None:
        df = df[df["mode"] == mode]

    if len(df) > 0:
        # make sure progress is 100% for finished experiments
        df.loc[df.status == "finished", "progress"] = "1.0"

        df["info"] = np.where(
            (df["status"] == "running") & (df["eta"] != ""),
            df["eta"].apply(lambda x: f"ETA: {x}"),
            df["info"],
        )

    return df


def get_datasets(
    q: Q,
    show_experiment_datasets: bool = True,
) -> pd.DataFrame:
    """Return all datasets given certain restrictions

    Args:
        q: Q
        show_experiment_datasets: whether to also show datasets linked to experiments

    Returns:
        dataset df
    """

    df = q.client.app_db.get_datasets_df()

    df, info = get_datasets_info(df, q)
    for k, v in info.items():
        df[k] = v

    for type in ["train", "validation"]:
        col_name = f"{type}_rows"
        if col_name not in df:
            continue
        rows = df[col_name].astype(float).map("{:.0f}".format)
        del df[col_name]
        rows[rows == "nan"] = "None"

        if f"{type} dataframe" in df.columns:
            idx = df.columns.get_loc(f"{type} dataframe") + 1
            df.insert(idx, f"{type} rows", rows)

    if not show_experiment_datasets:
        experiment_datasets = get_experiments(q).dataset.unique()
        df = df.loc[~df["name"].isin(experiment_datasets)]

    return df


def start_experiment(cfg: Any, q: Q, pre: str, gpu_list: Optional[List] = None) -> None:
    """Starts an experiment

    Args:
        cfg: configuration settings
        q: Q
        pre: prefix for client keys
        gpu_list: list of GPUs available
    """
    if gpu_list is None:
        gpu_list = cfg.environment.gpus

    # Get queue of the processes to wait for
    running_experiments = get_experiments(q=q)
    running_experiments = running_experiments[
        running_experiments.status.isin(["queued", "running"])
    ]
    all_process_queue = []
    for _, row in running_experiments.iterrows():
        for gpu_id in row["gpu_list"].split(","):
            if gpu_id in gpu_list:
                all_process_queue.append(row["process_id"])

    process_queue = list(set(all_process_queue))

    env_vars = {
        "NEPTUNE_API_TOKEN": q.client["default_neptune_api_token"],
        "OPENAI_API_KEY": q.client["default_openai_api_token"],
        "GPT_EVAL_MAX": str(q.client["default_gpt_eval_max"]),
    }
    if q.client["default_openai_azure"]:
        env_vars.update(
            {
                "OPENAI_API_TYPE": "azure",
                "OPENAI_API_BASE": q.client["default_openai_api_base"],
                "OPENAI_API_VERSION": q.client["default_openai_api_version"],
                "OPENAI_API_DEPLOYMENT_ID": q.client[
                    "default_openai_api_deployment_id"
                ],
            }
        )
    if q.client["default_huggingface_api_token"]:
        env_vars.update(
            {"HUGGINGFACE_TOKEN": q.client["default_huggingface_api_token"]}
        )

    env_vars = {k: v or "" for k, v in env_vars.items()}

    cfg = copy_config(cfg, q)
    cfg.output_directory = f"{get_output_dir(q)}/{cfg.experiment_name}/"
    os.makedirs(cfg.output_directory)
    save_config_yaml(f"{cfg.output_directory}/cfg.yaml", cfg)

    # Start the training process
    p = start_process(
        cfg=cfg, gpu_list=gpu_list, process_queue=process_queue, env_vars=env_vars
    )

    logger.info(f"Process: {p.pid}, Queue: {process_queue}, GPUs: {gpu_list}")

    experiment = Experiment(
        name=cfg.experiment_name,
        mode="train",
        dataset=q.client[f"{pre}/dataset"],
        config_file=q.client[f"{pre}/cfg_file"],
        path=cfg.output_directory,
        seed=cfg.environment.seed,
        process_id=p.pid,
        gpu_list=",".join(gpu_list),
    )

    q.client.app_db.add_experiment(experiment)


def get_frame_stats(frame):
    non_numeric_cols = frame.select_dtypes(object).columns
    is_str_cols = [
        x
        for x in non_numeric_cols
        if frame[x].dropna().size and (frame[x].dropna().apply(type) == str).all()
    ]
    cols_to_drop = [x for x in non_numeric_cols if x not in is_str_cols]

    if len(cols_to_drop):  # drop array/list/non-str object columns
        frame = frame.drop(columns=cols_to_drop)
        non_numeric_cols = frame.select_dtypes(object).columns

    if len(frame.columns) == 0:
        return None

    numeric_cols = [col for col in frame if col not in non_numeric_cols]

    if len(non_numeric_cols) == 0 or len(numeric_cols) == 0:
        stats = frame.describe()
        if len(numeric_cols):
            stats = stats.round(decimals=3)
            stats.loc["unique"] = frame.nunique()  # unique is part of describe for str

    else:
        stats1 = frame[non_numeric_cols].describe()
        stats2 = frame[numeric_cols].describe().round(decimals=3)

        stats2.loc["unique"] = frame[numeric_cols].nunique()
        stats = (
            stats1.reset_index()
            .merge(stats2.reset_index(), how="outer", on="index")
            .fillna("")
        ).set_index("index")

    stats = stats.T.reset_index().rename(columns={"index": "column"})

    for col in ["count", "unique"]:
        if col in stats:
            stats[col] = stats[col].astype(int)

    return stats


def dir_file_table(current_path: str) -> pd.DataFrame:
    results = [".."]
    try:
        if os.path.isdir(current_path):
            files = os.listdir(current_path)
            files = sorted([f for f in files if not f.startswith(".")], key=str.lower)
            results.extend(files)
    except Exception:
        logger.error(f"Error while listing folder '{current_path}':", exc_info=True)

    return pd.DataFrame({current_path: results})


def get_download_link(q, artifact_path):
    new_path = os.path.relpath(artifact_path, get_output_dir(q))
    new_path = os.path.join(get_download_dir(q), new_path)
    url_path = os.path.relpath(new_path, get_output_dir(q))

    if not os.path.exists(new_path):
        os.makedirs(os.path.dirname(new_path), exist_ok=True)
        os.symlink(os.path.abspath(artifact_path), os.path.abspath(new_path))

    # return a relative path so that downloads work when the instance is
    # behind a reverse proxy or being accessed by a public IP in a public
    # cloud.

    return url_path


def check_valid_upload_content(upload_path: str) -> Tuple[bool, str]:
    if upload_path.endswith("zip"):
        valid = zipfile.is_zipfile(upload_path)
        error = "" if valid else "File is not a zip file"
    else:
        valid = is_valid_data_frame(upload_path)
        error = "" if valid else "File does not have valid format"

    if not valid:
        os.remove(upload_path)

    return valid, error


def flatten_dict(d: collections.abc.MutableMapping) -> dict:
    """
    Adapted from https://stackoverflow.com/a/6027615
    Does not work with nesting and mutiple keys with the same name!

    Args:
        d: dict style object
    Return:
        A flattened dict
    """

    items: List[Tuple[Any, Any]] = []
    for k, v in d.items():
        if isinstance(v, collections.abc.MutableMapping):
            items.extend(flatten_dict(v).items())
        else:
            items.append((k, v))
    return dict(items)


def get_unique_name(expected_name, existing_names, is_invalid_function=None):
    """
    Return a new name that does not exist in list of existing names

    Args:
        expected_name: preferred name
        existing_names: list of existing names
        is_invalid_function: optional callable, to determine if the new name is
            invalid
    Return:
        new name
    """

    new_name = expected_name
    cnt = 1

    while new_name in existing_names or (
        is_invalid_function is not None and is_invalid_function(new_name)
    ):
        new_name = f"{expected_name}.{cnt}"
        cnt += 1

    return new_name


def get_unique_dataset_name(q, dataset_name, include_all_folders=True):
    """
    Return a dataset name that does not exist yet

    Args:
        q: Q
        dataset_name: preferred dataset name
        include_all_folders: whether to also consider all (temp) dataset folders
    Return:
        new dataset_name
    """
    datasets_df = q.client.app_db.get_datasets_df()

    existing_names = datasets_df["name"].values.tolist()
    if include_all_folders:
        existing_names.extend(os.listdir(get_data_dir(q)))

    return get_unique_name(dataset_name, existing_names)


def get_valid_temp_data_folder(q: Q, folder_path: str) -> str:
    """
    Return new temporary data folder path not associated with any existing dataset

    Args:
        q: Q
        folder_path: original folder_path
    Return:
        new folder path not associated with any existing dataset
    """
    dirname = os.path.dirname(folder_path)
    basename = os.path.basename(folder_path)
    unique_name = get_unique_dataset_name(q, basename, include_all_folders=False)
    return os.path.join(dirname, unique_name)


def remove_temp_files(q: Q):
    """
    Remove any temp folders leftover from dataset import
    """

    datasets_df = q.client.app_db.get_datasets_df()
    all_files = glob.glob(os.path.join(get_data_dir(q), "*"))
    for file in all_files:
        if not any([path in file for path in datasets_df["path"].values]):
            if os.path.isdir(file):
                shutil.rmtree(file)
            else:
                os.remove(file)


def get_gpu_usage():
    usage = 0.0
    all_gpus = GPUtil.getGPUs()
    for gpu in all_gpus:
        usage += gpu.load

    usage /= len(all_gpus)
    return usage * 100


def get_single_gpu_usage(sig_figs=1, highlight=None):
    all_gpus = GPUtil.getGPUs()
    items = []
    for i, gpu in enumerate(all_gpus):
        gpu_load = f"{round(gpu.load * 100, sig_figs)}%"
        memory_used = get_size_str(
            gpu.memoryUsed, sig_figs=1, input_unit="MB", output_unit="GB"
        )
        memory_total = get_size_str(
            gpu.memoryTotal, sig_figs=1, input_unit="MB", output_unit="GB"
        )

        if highlight is not None:
            gpu_load = f"**<span style='color:{highlight}'>{gpu_load}</span>**"
            memory_used = f"**<span style='color:{highlight}'>{memory_used}</span>**"
            memory_total = f"**<span style='color:{highlight}'>{memory_total}</span>**"

        items.append(
            ui.text(
                f"GPU #{i + 1} - current utilization: {gpu_load} - "
                f"VRAM usage: {memory_used} / {memory_total} - {gpu.name}"
            )
        )
    return items


def copy_config(cfg: Any, q: Q) -> Any:
    """Makes a copy of the config

    Args:
        cfg: config object
    Returns:
        copy of the config
    """
    # make unique yaml file using uuid
    os.makedirs(get_output_dir(q), exist_ok=True)
    tmp_file = os.path.join(f"{get_output_dir(q)}/", str(uuid.uuid4()) + ".yaml")
    save_config_yaml(tmp_file, cfg)
    cfg = load_config_yaml(tmp_file)
    os.remove(tmp_file)
    return cfg


def make_label(title: str, appendix: str = "") -> str:
    """Cleans a label

    Args:
        title: title to clean
        appendix: optional appendix

    Returns:
        Cleaned label

    """
    label = " ".join(w.capitalize() for w in title.split("_")) + appendix
    label = label.replace("Llm", "LLM")
    return label


def get_cfg_list_items(cfg) -> List:
    items = parse_cfg_dataclass(cfg)
    x = []
    for item in items:
        for k, v in item.items():
            x.append(ui.stat_list_item(label=make_label(k), value=str(v)))
    return x


# https://stackoverflow.com/questions/2059482/temporarily-modify-the-current-processs-environment
@contextlib.contextmanager
def set_env(**environ):
    """
    Temporarily set the process environment variables.

    >>> with set_env(PLUGINS_DIR='test/plugins'):
    ...   "PLUGINS_DIR" in os.environ
    True

    >>> "PLUGINS_DIR" in os.environ
    False

    :type environ: dict[str, unicode]
    :param environ: Environment variables to set
    """
    old_environ = dict(os.environ)
    os.environ.update(environ)
    try:
        yield
    finally:
        os.environ.clear()
        os.environ.update(old_environ)


def hf_repo_friendly_name(name: str) -> str:
    """
    Converts the given string into a huggingface-repository-friendly name.

    • Repo id must use alphanumeric chars or '-', '_', and '.' allowed.
    • '--' and '..' are forbidden
    • '-' and '.' cannot start or end the name
    • max length is 96
    """
    name = re.sub("[^0-9a-zA-Z]+", "-", name)
    name = name[1:] if name.startswith("-") else name
    name = name[:-1] if name.endswith("-") else name
    name = name[:96]
    return name


def save_hf_yaml(
    path: str, account_name: str, model_name: str, repo_id: Optional[str] = None
):
    with open(path, "w") as fp:
        yaml.dump(
            {
                "account_name": account_name,
                "model_name": model_name,
                "repo_id": repo_id if repo_id else f"{account_name}/{model_name}",
            },
            fp,
            indent=4,
        )