File size: 9,232 Bytes
07423df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import random
from contextlib import contextmanager
from dataclasses import dataclass
from unittest.mock import patch
import pandas as pd
import pytest
import torch
import torch.nn as nn
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigNLPCausalLMPrediction,
ConfigNLPCausalLMTokenizer,
)
from llm_studio.python_configs.text_dpo_modeling_config import (
ConfigDPODataset,
ConfigProblemBase,
)
from llm_studio.src.datasets.text_dpo_modeling_ds import CustomDataset
from llm_studio.src.models.text_dpo_modeling_model import Model
from llm_studio.src.utils.data_utils import batch_padding
from train import run_eval
@pytest.fixture
def df():
prompt = """when ordering your sandstones, you select which colour scale you would want.
it could be e.g. a 100% from grey/sand mix, or 80% fra beige/yellow mixed with 20% from black/brown.
This is all lower case. Can you fix that?"""
system = """You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can.
While performing the task think step-by-step and justify your steps."""
answer = """When ordering your sandstones, you select which color scale you would want. It could be, for example, a 100% from grey/sand mix, or 80% from beige/yellow mixed with 20% from black/brown.
Step 1: Capitalize the first letter of the sentence.
Step 2: Correct the spelling of "color" (assuming American English usage).
Step 3: Replace ", e.g." with "for example" to clarify the sentence.
Step 4: Capitalize "a" in "100% from a grey/sand mix"
Step 5: Ensure the proper usage of words and punctuation throughout the revised sentence."""
return pd.DataFrame(
{
"prompt": [prompt],
"system": [system],
"answer": [answer],
"rejected_answer": ["I cannot do that."],
}
)
def generate_causal_lm_model_text(df):
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigNLPCausalLMDataset,
)
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigProblemBase as ConfigCausalLMProblemBase,
)
from llm_studio.src.datasets.text_causal_language_modeling_ds import (
CustomDataset as CausalLMCustomDataset,
)
from llm_studio.src.models.text_causal_language_modeling_model import (
Model as CausalLMModel,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cfg = ConfigCausalLMProblemBase(
llm_backbone="h2oai/llama2-0b-unit-test",
dataset=ConfigNLPCausalLMDataset(
system_column="system",
prompt_column=("prompt",),
answer_column="answer_column",
),
tokenizer=ConfigNLPCausalLMTokenizer(
max_length_prompt=256, max_length_answer=256, max_length=512
),
)
cfg.architecture.backbone_dtype = "float32"
dataset = CausalLMCustomDataset(df, cfg, mode="train")
model = CausalLMModel(cfg).to(device).eval()
dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True)
batch = next(iter(dataloader))
batch = {k: v.to(device) for k, v in batch.items()}
batch_padding(
cfg,
batch,
mask_key="prompt_attention_mask",
pad_keys=[
"prompt_input_ids",
"prompt_attention_mask",
"prompt_special_tokens_mask",
],
)
with torch.no_grad():
generated_text = dataset.tokenizer.decode(model.generate(batch, cfg)[0])
return generated_text
def test_generation_is_the_same_as_for_causal_language_modeling(df):
"""
DPO model should generate the same output text as causal language modeling
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generated_text_causal_lm = generate_causal_lm_model_text(df)
cfg = ConfigProblemBase(
llm_backbone="h2oai/llama2-0b-unit-test",
dataset=ConfigDPODataset(
system_column="system",
prompt_column=("prompt",),
answer_column="answer_column",
rejected_answer_column="rejected_answer",
),
tokenizer=ConfigNLPCausalLMTokenizer(
max_length_prompt=256, max_length_answer=256, max_length=512
),
)
cfg.architecture.backbone_dtype = "float32"
dataset = CustomDataset(df, cfg, mode="train")
model = Model(cfg).eval().to(device)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True)
batch = next(iter(dataloader))
batch = {k: v.to(device) for k, v in batch.items()}
batch_padding(
cfg,
batch,
mask_key="prompt_attention_mask",
pad_keys=[
"prompt_input_ids",
"prompt_attention_mask",
"prompt_special_tokens_mask",
],
)
with torch.no_grad():
generated_text = dataset.tokenizer.decode(model.generate(batch, cfg)[0])
assert (
generated_text == generated_text_causal_lm
), "Generated text is not the same as from causal LM model:" "{}\n{}".format(
generated_text, generated_text_causal_lm
)
@pytest.fixture
def df2():
# create a list of all lowercase letters
alphabet = [chr(i) for i in range(97, 123)]
# create random strings from the alphabet
prompts = ["".join(random.choice(alphabet) for _ in range(10)) for _ in range(10)]
systems = ["".join(random.choice(alphabet) for _ in range(10)) for _ in range(10)]
answers = ["".join(random.choice(alphabet) for _ in range(10)) for _ in range(10)]
rejected_answers = [
"".join(random.choice(alphabet) for _ in range(10)) for _ in range(10)
]
return pd.DataFrame(
{
"prompt": prompts,
"system": systems,
"answer": answers,
"rejected_answer": rejected_answers,
}
)
def test_dpo_perplexity_metric(tmp_path, df2):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cfg = ConfigProblemBase(
output_directory=str(tmp_path),
llm_backbone="MaxJeblick/llama2-0b-unit-test",
dataset=ConfigDPODataset(
system_column="system",
prompt_column=("prompt",),
answer_column="answer_column",
rejected_answer_column="answer_column",
),
tokenizer=ConfigNLPCausalLMTokenizer(
max_length_prompt=256, max_length_answer=256, max_length=512
),
prediction=ConfigNLPCausalLMPrediction(metric="Perplexity"),
)
cfg.architecture.gradient_checkpointing = False
cfg.environment._device = device # type: ignore
# bfloat16 is not supported on older GPUs
cfg.environment.mixed_precision_dtype = "float16"
dataset = CustomDataset(df2, cfg, mode="train")
model = Model(cfg).eval().to(device)
vocab_size = model.backbone.config.vocab_size
class MockBackbone(nn.Module):
"""
Chosen and rejected logits are the same
Chosen reference and rejected reference logits are the same,
but different from chosen and rejected logits.
As answer_column and rejected_answer_column are the same,
-> perplexity and rejection_perplexity should be the same
-> chosen_rewards and rejected_rewards should be the same
-> chosen_cross_entropy and rejected_cross_entropy should be the same
-> reward margin should be 0
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.seed = 0
def disable_adapter(self):
# mock lora adapter
@contextmanager
def flip_seed():
self.seed = 1
yield None
self.seed = 0
return flip_seed()
def forward(self, input_ids, attention_mask):
@dataclass
class Result:
bs, seq_len = input_ids.shape
torch.manual_seed(self.seed)
logits = torch.rand((bs, seq_len, vocab_size)).to(input_ids.device)
result = Result()
return result
class ListLogger:
def __init__(self):
self.logs = {}
def log(self, subset: str, name: str, value: str | float, step: float = None):
self.logs[name] = self.logs.get(name, []) + [value]
with patch.object(target=model, attribute="backbone", new_callable=MockBackbone):
dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True)
# mock cfg.logging._logger.log
cfg.logging._logger = ListLogger()
run_eval(
cfg,
model=model,
val_dataloader=dataloader,
val_df=df2,
mode="validation",
)
log_dict = cfg.logging._logger.logs
assert log_dict["Perplexity"] == log_dict["rejected_perplexity"]
assert log_dict["chosen_rewards"] == log_dict["rejected_rewards"]
assert (
log_dict["chosen_cross_entropy_loss"] == log_dict["rejected_cross_entropy_loss"]
)
assert log_dict["reward_margin"] == [0] * len(log_dict["reward_margin"])
|