File size: 10,662 Bytes
07423df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import numpy as np
import pandas as pd
import pytest
import torch
from tqdm import tqdm
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigNLPCausalLMTokenizer,
)
from llm_studio.python_configs.text_dpo_modeling_config import (
ConfigDPODataset,
ConfigProblemBase,
)
from llm_studio.src.datasets.text_dpo_modeling_ds import CustomDataset
@pytest.fixture
def df():
return pd.DataFrame(
{
"prompt_column": [f"prompt {i}" for i in range(200)],
"answer_column": [f"chosen_response {i}" for i in range(200)],
"rejected_answer_column": [f"rejected_response {i}" for i in range(200)],
}
)
@pytest.fixture
def df_with_conversation_chain_ids():
"""
Create a dataframe with conversation chain ids, e.g.:
prompt_column answer_column rejected_answer_column parent_id_column id
0 prompt 1 response 1 response 1 None 1
1 prompt 2 response 2 response 2 1 2
2 prompt 3 response 3 response 3 2 3
3 prompt 4 response 4 response 4 3 4
4 prompt 5 chosen_response 5 rejected_response 5 4 5
5 prompt 6 response 6 response 6 None 6
"""
ids = [str(i + 1) for i in range(200)]
parent_ids = np.array(ids, dtype=object).reshape(-1, 5)
parent_ids[:, -1] = "None"
parent_ids = np.roll(parent_ids, 1, 1).reshape(-1)
# ids: [0, 1, 2, 3, 4 ]
# parent_ids: [None, 0, 1, 2, 3]
# conversation: 0 -> 1 -> 2 -> 3 -> 4
chosen_responses = [
f"chosen_response {idx}" if int(idx) % 5 == 0 else f"response {idx}"
for idx in ids
]
rejected_responses = [
f"rejected_response {idx}" if int(idx) % 5 == 0 else f"response {idx}"
for idx in ids
]
return pd.DataFrame(
{
"prompt_column": [f"prompt {idx}" for idx in ids],
"answer_column": chosen_responses,
"rejected_answer_column": rejected_responses,
"parent_id_column": parent_ids,
"id": ids,
}
)
def test_dataset_conversation_chain_is_correct(df_with_conversation_chain_ids):
cfg = ConfigProblemBase(
dataset=ConfigDPODataset(
prompt_column=("prompt_column",),
answer_column="answer_column",
rejected_answer_column="rejected_answer_column",
parent_id_column="parent_id_column",
)
)
dataset = CustomDataset(df_with_conversation_chain_ids, cfg, mode="train")
# Check for right formatting, e.g.:
# dataset.conversation_chain_handler_chosen[0] ==
# {
# "prompts": ["prompt 1", "prompt 2", "prompt 3", "prompt 4", "prompt 5"],
# "answers": [
# "response 1",
# "response 2",
# "response 3",
# "response 4",
# "chosen_response 5",
# ],
# "systems": ["", "", "", "", ""],
# }
for idx in range(200 // 5):
for name, conversation_chain_handler in zip(
["chosen", "rejected"],
[
dataset.conversation_chain_handler,
dataset.conversation_chain_handler_rejected,
],
):
input_text_dict = conversation_chain_handler[idx]
expected = {
"prompts": [f"prompt {i + 1}" for i in range(idx * 5, (idx + 1) * 5)],
"answers": [
f"response {i + 1}" for i in range(idx * 5, (idx + 1) * 5 - 1)
]
+ [f"{name}_response {idx * 5 + 5}"],
"systems": [""] * 5,
}
for key in expected:
assert input_text_dict[key] == expected[key], (
input_text_dict[key],
expected[key],
name,
)
def test_dataset_label_is_correct(df_with_conversation_chain_ids):
cfg = ConfigProblemBase(
dataset=ConfigDPODataset(
prompt_column=("prompt_column",),
answer_column="answer_column",
rejected_answer_column="rejected_answer_column",
parent_id_column="parent_id_column",
)
)
dataset = CustomDataset(df_with_conversation_chain_ids, cfg, mode="train")
for idx, item in enumerate(dataset):
sample = dataset[idx]
chosen_response = dataset.tokenizer.decode(
sample["chosen_labels"][sample["chosen_labels"] != -100],
skip_special_tokens=True,
)
rejected_response = dataset.tokenizer.decode(
sample["rejected_labels"][sample["rejected_labels"] != -100],
skip_special_tokens=True,
)
prompt = dataset.tokenizer.decode(
sample["prompt_input_ids"][sample["prompt_input_ids"] != 0],
skip_special_tokens=True,
)
assert (
prompt == f"<|prompt|>prompt {idx * 5 + 1} "
f"<|answer|> response {idx * 5 + 1} "
f"<|prompt|>prompt {idx * 5 + 2} "
f"<|answer|> response {idx * 5 + 2} "
f"<|prompt|>prompt {idx * 5 + 3} "
f"<|answer|> response {idx * 5 + 3} "
f"<|prompt|>prompt {idx * 5 + 4} "
f"<|answer|> response {idx * 5 + 4} "
f"<|prompt|>prompt {idx * 5 + 5} "
"<|answer|>"
)
assert chosen_response == f"chosen_response {idx * 5 + 5}"
assert rejected_response == f"rejected_response {idx * 5 + 5}"
def test_dataloader_has_correct_keys(df):
cfg = ConfigProblemBase(
dataset=ConfigDPODataset(
prompt_column=("prompt_column",),
answer_column="answer_column",
rejected_answer_column="rejected_answer_column",
parent_id_column="None",
)
)
dataset = CustomDataset(df, cfg, mode="train")
dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True)
for idx, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
for key in batch:
if idx != len(dataloader) - 1:
assert batch[key].size(0) == 16, (
key,
batch[key].shape,
)
keys = [
"chosen_input_ids",
"chosen_attention_mask",
"chosen_labels",
"rejected_input_ids",
"rejected_attention_mask",
"rejected_labels",
"prompt_input_ids",
"prompt_attention_mask",
]
assert set(batch.keys()) - set(keys) == set()
assert set(keys) - set(batch.keys()) == set()
def test_empy_answer_dataset_throws_no_error(df):
cfg = ConfigProblemBase(
dataset=ConfigDPODataset(
prompt_column=("prompt_column",),
answer_column="answer_column",
rejected_answer_column="rejected_answer_column",
add_eos_token_to_answer=False,
add_eos_token_to_prompt=False,
add_eos_token_to_system=False,
),
)
for column in ["prompt_column", "answer_column", "rejected_answer_column"]:
values = df[column].values
df[column] = ""
dataset = CustomDataset(df, cfg, mode="train")
[dataset[i] for i in range(len(dataset))]
df[column] = values
@pytest.fixture
def df_single_prompt():
prompt = """when ordering your sandstones, you select which colour scale you would want.
it could be e.g. a 100% from grey/sand mix, or 80% fra beige/yellow mixed with 20% from black/brown.
This is all lower case. Can you fix that?"""
system = """You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can.
While performing the task think step-by-step and justify your steps."""
answer = """When ordering your sandstones, you select which color scale you would want. It could be, for example, a 100% from grey/sand mix, or 80% from beige/yellow mixed with 20% from black/brown.
Step 1: Capitalize the first letter of the sentence.
Step 2: Correct the spelling of "color" (assuming American English usage).
Step 3: Replace ", e.g." with "for example" to clarify the sentence.
Step 4: Capitalize "a" in "100% from a grey/sand mix"
Step 5: Ensure the proper usage of words and punctuation throughout the revised sentence."""
return pd.DataFrame(
{
"prompt": [prompt],
"system": [system],
"answer": [answer],
"rejected_answer": ["I cannot do that."],
}
)
def generate_causal_lm_model_input_ids(df):
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigNLPCausalLMDataset,
)
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigProblemBase as ConfigCausalLMProblemBase,
)
from llm_studio.src.datasets.text_causal_language_modeling_ds import (
CustomDataset as CausalLMCustomDataset,
)
cfg = ConfigCausalLMProblemBase(
llm_backbone="h2oai/h2ogpt-4096-llama2-7b",
dataset=ConfigNLPCausalLMDataset(
system_column="system",
prompt_column=("prompt",),
answer_column="answer",
),
tokenizer=ConfigNLPCausalLMTokenizer(
max_length_prompt=256, max_length_answer=256, max_length=512
),
)
dataset = CausalLMCustomDataset(df, cfg, mode="train")
return dataset[0]
def test_dataset_prompt_ids_are_the_same_as_for_causal_language_modeling(
df_single_prompt,
):
"""
DPO model should generate the same prompts as causal language modeling
"""
generated_text_causal_lm = generate_causal_lm_model_input_ids(df_single_prompt)
cfg = ConfigProblemBase(
llm_backbone="h2oai/h2ogpt-4096-llama2-7b",
dataset=ConfigDPODataset(
system_column="system",
prompt_column=("prompt",),
answer_column="answer",
rejected_answer_column="rejected_answer",
),
tokenizer=ConfigNLPCausalLMTokenizer(
max_length_prompt=256, max_length_answer=256, max_length=512
),
)
dataset = CustomDataset(df_single_prompt, cfg, mode="train")
generated_text = dataset[0]
for key in ["prompt_input_ids", "prompt_attention_mask"]:
assert torch.all(
generated_text_causal_lm[key] == generated_text[key]
), f"{key} is not the same"
|