File size: 10,662 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
import pandas as pd
import pytest
import torch
from tqdm import tqdm

from llm_studio.python_configs.text_causal_language_modeling_config import (
    ConfigNLPCausalLMTokenizer,
)
from llm_studio.python_configs.text_dpo_modeling_config import (
    ConfigDPODataset,
    ConfigProblemBase,
)
from llm_studio.src.datasets.text_dpo_modeling_ds import CustomDataset


@pytest.fixture
def df():
    return pd.DataFrame(
        {
            "prompt_column": [f"prompt {i}" for i in range(200)],
            "answer_column": [f"chosen_response {i}" for i in range(200)],
            "rejected_answer_column": [f"rejected_response {i}" for i in range(200)],
        }
    )


@pytest.fixture
def df_with_conversation_chain_ids():
    """
    Create a dataframe with conversation chain ids, e.g.:
          prompt_column      answer_column rejected_answer_column parent_id_column id
    0      prompt 1         response 1             response 1             None  1
    1      prompt 2         response 2             response 2                1  2
    2      prompt 3         response 3             response 3                2  3
    3      prompt 4         response 4             response 4                3  4
    4      prompt 5  chosen_response 5    rejected_response 5                4  5
    5      prompt 6         response 6             response 6             None  6
    """
    ids = [str(i + 1) for i in range(200)]

    parent_ids = np.array(ids, dtype=object).reshape(-1, 5)
    parent_ids[:, -1] = "None"
    parent_ids = np.roll(parent_ids, 1, 1).reshape(-1)

    # ids:          [0, 1, 2, 3, 4   ]
    # parent_ids:   [None, 0, 1, 2, 3]
    # conversation: 0 -> 1 -> 2 -> 3 -> 4
    chosen_responses = [
        f"chosen_response {idx}" if int(idx) % 5 == 0 else f"response {idx}"
        for idx in ids
    ]
    rejected_responses = [
        f"rejected_response {idx}" if int(idx) % 5 == 0 else f"response {idx}"
        for idx in ids
    ]
    return pd.DataFrame(
        {
            "prompt_column": [f"prompt {idx}" for idx in ids],
            "answer_column": chosen_responses,
            "rejected_answer_column": rejected_responses,
            "parent_id_column": parent_ids,
            "id": ids,
        }
    )


def test_dataset_conversation_chain_is_correct(df_with_conversation_chain_ids):
    cfg = ConfigProblemBase(
        dataset=ConfigDPODataset(
            prompt_column=("prompt_column",),
            answer_column="answer_column",
            rejected_answer_column="rejected_answer_column",
            parent_id_column="parent_id_column",
        )
    )
    dataset = CustomDataset(df_with_conversation_chain_ids, cfg, mode="train")

    # Check for right formatting, e.g.:
    # dataset.conversation_chain_handler_chosen[0] ==
    # {
    #     "prompts": ["prompt 1", "prompt 2", "prompt 3", "prompt 4", "prompt 5"],
    #     "answers": [
    #         "response 1",
    #         "response 2",
    #         "response 3",
    #         "response 4",
    #         "chosen_response 5",
    #     ],
    #     "systems": ["", "", "", "", ""],
    # }

    for idx in range(200 // 5):
        for name, conversation_chain_handler in zip(
            ["chosen", "rejected"],
            [
                dataset.conversation_chain_handler,
                dataset.conversation_chain_handler_rejected,
            ],
        ):
            input_text_dict = conversation_chain_handler[idx]
            expected = {
                "prompts": [f"prompt {i + 1}" for i in range(idx * 5, (idx + 1) * 5)],
                "answers": [
                    f"response {i + 1}" for i in range(idx * 5, (idx + 1) * 5 - 1)
                ]
                + [f"{name}_response {idx * 5 + 5}"],
                "systems": [""] * 5,
            }

            for key in expected:
                assert input_text_dict[key] == expected[key], (
                    input_text_dict[key],
                    expected[key],
                    name,
                )


def test_dataset_label_is_correct(df_with_conversation_chain_ids):
    cfg = ConfigProblemBase(
        dataset=ConfigDPODataset(
            prompt_column=("prompt_column",),
            answer_column="answer_column",
            rejected_answer_column="rejected_answer_column",
            parent_id_column="parent_id_column",
        )
    )
    dataset = CustomDataset(df_with_conversation_chain_ids, cfg, mode="train")

    for idx, item in enumerate(dataset):
        sample = dataset[idx]
        chosen_response = dataset.tokenizer.decode(
            sample["chosen_labels"][sample["chosen_labels"] != -100],
            skip_special_tokens=True,
        )
        rejected_response = dataset.tokenizer.decode(
            sample["rejected_labels"][sample["rejected_labels"] != -100],
            skip_special_tokens=True,
        )
        prompt = dataset.tokenizer.decode(
            sample["prompt_input_ids"][sample["prompt_input_ids"] != 0],
            skip_special_tokens=True,
        )

        assert (
            prompt == f"<|prompt|>prompt {idx * 5 + 1} "
            f"<|answer|> response {idx * 5 + 1} "
            f"<|prompt|>prompt {idx * 5 + 2} "
            f"<|answer|> response {idx * 5 + 2} "
            f"<|prompt|>prompt {idx * 5 + 3} "
            f"<|answer|> response {idx * 5 + 3} "
            f"<|prompt|>prompt {idx * 5 + 4} "
            f"<|answer|> response {idx * 5 + 4} "
            f"<|prompt|>prompt {idx * 5 + 5} "
            "<|answer|>"
        )
        assert chosen_response == f"chosen_response {idx * 5 + 5}"
        assert rejected_response == f"rejected_response {idx * 5 + 5}"


def test_dataloader_has_correct_keys(df):
    cfg = ConfigProblemBase(
        dataset=ConfigDPODataset(
            prompt_column=("prompt_column",),
            answer_column="answer_column",
            rejected_answer_column="rejected_answer_column",
            parent_id_column="None",
        )
    )

    dataset = CustomDataset(df, cfg, mode="train")
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True)

    for idx, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
        for key in batch:
            if idx != len(dataloader) - 1:
                assert batch[key].size(0) == 16, (
                    key,
                    batch[key].shape,
                )

            keys = [
                "chosen_input_ids",
                "chosen_attention_mask",
                "chosen_labels",
                "rejected_input_ids",
                "rejected_attention_mask",
                "rejected_labels",
                "prompt_input_ids",
                "prompt_attention_mask",
            ]
            assert set(batch.keys()) - set(keys) == set()
            assert set(keys) - set(batch.keys()) == set()


def test_empy_answer_dataset_throws_no_error(df):
    cfg = ConfigProblemBase(
        dataset=ConfigDPODataset(
            prompt_column=("prompt_column",),
            answer_column="answer_column",
            rejected_answer_column="rejected_answer_column",
            add_eos_token_to_answer=False,
            add_eos_token_to_prompt=False,
            add_eos_token_to_system=False,
        ),
    )
    for column in ["prompt_column", "answer_column", "rejected_answer_column"]:
        values = df[column].values
        df[column] = ""
        dataset = CustomDataset(df, cfg, mode="train")
        [dataset[i] for i in range(len(dataset))]
        df[column] = values


@pytest.fixture
def df_single_prompt():
    prompt = """when ordering your sandstones, you select which colour scale you would want.
 it could be e.g. a 100% from grey/sand mix, or 80% fra beige/yellow mixed with 20% from black/brown.
  This is all lower case. Can you fix that?"""
    system = """You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can.
While performing the task think step-by-step and justify your steps."""
    answer = """When ordering your sandstones, you select which color scale you would want. It could be, for example, a 100% from grey/sand mix, or 80% from beige/yellow mixed with 20% from black/brown.
Step 1: Capitalize the first letter of the sentence.
Step 2: Correct the spelling of "color" (assuming American English usage).
Step 3: Replace ", e.g." with "for example" to clarify the sentence.
Step 4: Capitalize "a" in "100% from a grey/sand mix"
Step 5: Ensure the proper usage of words and punctuation throughout the revised sentence."""
    return pd.DataFrame(
        {
            "prompt": [prompt],
            "system": [system],
            "answer": [answer],
            "rejected_answer": ["I cannot do that."],
        }
    )


def generate_causal_lm_model_input_ids(df):
    from llm_studio.python_configs.text_causal_language_modeling_config import (
        ConfigNLPCausalLMDataset,
    )
    from llm_studio.python_configs.text_causal_language_modeling_config import (
        ConfigProblemBase as ConfigCausalLMProblemBase,
    )
    from llm_studio.src.datasets.text_causal_language_modeling_ds import (
        CustomDataset as CausalLMCustomDataset,
    )

    cfg = ConfigCausalLMProblemBase(
        llm_backbone="h2oai/h2ogpt-4096-llama2-7b",
        dataset=ConfigNLPCausalLMDataset(
            system_column="system",
            prompt_column=("prompt",),
            answer_column="answer",
        ),
        tokenizer=ConfigNLPCausalLMTokenizer(
            max_length_prompt=256, max_length_answer=256, max_length=512
        ),
    )
    dataset = CausalLMCustomDataset(df, cfg, mode="train")
    return dataset[0]


def test_dataset_prompt_ids_are_the_same_as_for_causal_language_modeling(
    df_single_prompt,
):
    """
    DPO model should generate the same prompts as causal language modeling
    """
    generated_text_causal_lm = generate_causal_lm_model_input_ids(df_single_prompt)

    cfg = ConfigProblemBase(
        llm_backbone="h2oai/h2ogpt-4096-llama2-7b",
        dataset=ConfigDPODataset(
            system_column="system",
            prompt_column=("prompt",),
            answer_column="answer",
            rejected_answer_column="rejected_answer",
        ),
        tokenizer=ConfigNLPCausalLMTokenizer(
            max_length_prompt=256, max_length_answer=256, max_length=512
        ),
    )
    dataset = CustomDataset(df_single_prompt, cfg, mode="train")
    generated_text = dataset[0]

    for key in ["prompt_input_ids", "prompt_attention_mask"]:
        assert torch.all(
            generated_text_causal_lm[key] == generated_text[key]
        ), f"{key} is not the same"