elineve's picture
Upload 301 files
07423df
raw
history blame
11 kB
import asyncio
import gc
import logging
import os
import threading
from typing import Any, Callable, Dict, List, Optional
import numpy as np
import torch
from h2o_wave import Q, ui
from transformers import AutoTokenizer, TextStreamer
from llm_studio.app_utils.utils import parse_ui_elements
from llm_studio.src.models.text_causal_language_modeling_model import Model
from llm_studio.src.utils.modeling_utils import (
EnvVariableStoppingCriteria,
get_torch_dtype,
set_generation_config,
)
logger = logging.getLogger(__name__)
__all__ = ["chat_update", "is_app_blocked_while_streaming"]
USER = True
BOT = False
@torch.inference_mode(mode=True)
async def chat_update(q: Q) -> None:
"""
Update the chatbot with the new message.
"""
q.client["experiment/display/chat/finished"] = False
try:
await update_chat_window(q)
finally:
q.client["experiment/display/chat/finished"] = True
# Hide the "Stop generating" button
q.page["experiment/display/chat"].generating = False
async def update_chat_window(q):
cfg_prediction = parse_ui_elements(
cfg=q.client["experiment/display/chat/cfg"].prediction,
q=q,
pre="chat/cfg_predictions/cfg/",
)
q.client["experiment/display/chat/cfg"].prediction = cfg_prediction
# Update generation config
q.client["experiment/display/chat/model"].backbone = set_generation_config(
q.client["experiment/display/chat/model"].backbone, cfg_prediction
)
# could also invoke cfg.check() here, but leave it explicit as cfg.check()
# may raise other issues not related to the chatbot
if cfg_prediction.do_sample and cfg_prediction.temperature == 0.0:
q.page["meta"].dialog = ui.dialog(
title="Invalid Text Generation configuration.",
name="chatbot_invalid_settings",
items=[
ui.text(
"Do Sample enabled and Temperature = 0 are mutually exclusive. "
"Please increase Temperature or disable sampling."
),
],
closable=True,
)
await q.page.save()
return
# populate chat window with user message
logger.info(f"Using chatbot config: {cfg_prediction}")
if q.events["experiment/display/chat/chatbot"]:
prompt = q.events["experiment/display/chat/chatbot"]["suggestion"]
else:
prompt = q.client["experiment/display/chat/chatbot"]
message = [prompt, USER]
q.client["experiment/display/chat/messages"].append(message)
q.page["experiment/display/chat"].data += message
q.page["experiment/display/chat"].data += ["", BOT]
await q.page.save()
predicted_text = await answer_chat(q)
# populate chat window with bot message
logger.info(f"Predicted Answer: {predicted_text}")
message = [predicted_text, BOT]
q.client["experiment/display/chat/messages"].append(message)
q.page["experiment/display/chat"].data[-1] = message
async def answer_chat(q: Q) -> str:
cfg = q.client["experiment/display/chat/cfg"]
model: Model = q.client["experiment/display/chat/model"]
tokenizer = q.client["experiment/display/chat/tokenizer"]
full_prompt = ""
if len(q.client["experiment/display/chat/messages"]):
for prev_message in q.client["experiment/display/chat/messages"][
-(cfg.prediction.num_history + 1) :
]:
if prev_message[1] is USER:
prev_message = cfg.dataset.dataset_class.parse_prompt(
cfg, prev_message[0]
)
else:
prev_message = prev_message[0]
if cfg.dataset.add_eos_token_to_answer:
prev_message += cfg._tokenizer_eos_token
full_prompt += prev_message
logger.info(f"Full prompt: {full_prompt}")
inputs = cfg.dataset.dataset_class.encode(
tokenizer, full_prompt, cfg.tokenizer.max_length_prompt, "left"
)
inputs["prompt_input_ids"] = (
inputs.pop("input_ids").unsqueeze(0).to(cfg.environment._device)
)
inputs["prompt_attention_mask"] = (
inputs.pop("attention_mask").unsqueeze(0).to(cfg.environment._device)
)
def text_cleaner(text: str) -> str:
return cfg.dataset.dataset_class.clean_output(
output={"predicted_text": np.array([text])}, cfg=cfg
)["predicted_text"][0]
if cfg.prediction.num_beams == 1:
streamer = WaveChatStreamer(tokenizer=tokenizer, q=q, text_cleaner=text_cleaner)
# Need to start generation in a separate thread, otherwise streaming is blocked
thread = threading.Thread(
target=generate,
kwargs=dict(model=model, inputs=inputs, cfg=cfg, streamer=streamer),
)
q.client["currently_chat_streaming"] = True
# Show the "Stop generating" button
q.page["experiment/display/chat"].generating = True
# Hide suggestions
q.page["experiment/display/chat"].suggestions = None
try:
thread.start()
max_wait_time_in_seconds = 60 * 3
for current_wait_time in range(max_wait_time_in_seconds):
thread_is_dead = not thread.is_alive()
takes_too_much_time = current_wait_time == max_wait_time_in_seconds - 1
streaming_finished = streamer.finished
if streaming_finished or takes_too_much_time or thread_is_dead:
if takes_too_much_time:
# this is more of a safety measure
# to ensure the app gets responsive eventually
logger.warning(
"Chat generation took too much time. "
"Stopping chat generation."
)
if thread_is_dead: # some error occurred during streaming
logger.warning(
"Chat generation thread is not alive anymore. "
"Please check logs!"
)
if streaming_finished:
logger.info("Chat Stream has been completed")
predicted_text = streamer.answer
break
await q.sleep(1) # 1 second, see max_wait_time_in_seconds
finally:
del q.client["currently_chat_streaming"]
if thread.is_alive():
thread.join()
else:
# ValueError: `streamer` cannot be used with beam search (yet!).
# Make sure that `num_beams` is set to 1.
logger.info("Not streaming output, as it cannot be used with beam search.")
q.page["experiment/display/chat"].data[-1] = ["...", BOT]
await q.page.save()
predicted_answer_ids = generate(model, inputs, cfg)[0]
predicted_text = tokenizer.decode(
predicted_answer_ids, skip_special_tokens=True
)
predicted_text = text_cleaner(predicted_text)
del inputs
gc.collect()
torch.cuda.empty_cache()
return predicted_text
class WaveChatStreamer(TextStreamer):
"""
Utility class that updates the chabot card in a streaming fashion
"""
def __init__(
self,
tokenizer: AutoTokenizer,
q: Q,
text_cleaner: Optional[Callable] = None,
**decode_kwargs,
):
super().__init__(tokenizer, skip_prompt=True, **decode_kwargs)
self.text_cleaner = text_cleaner
self.words_predicted_answer: List[str] = []
self.q = q
self.loop = asyncio.get_event_loop()
self.finished = False
def on_finalized_text(self, text: str, stream_end: bool = False):
self.words_predicted_answer += [text]
self.loop.create_task(self.update_chat_page())
async def update_chat_page(self):
self.q.page["experiment/display/chat"].data[-1] = [self.answer, BOT]
await self.q.page.save()
@property
def answer(self):
"""
Create the answer by joining the generated words.
By this, self.text_cleaner does not need to be idempotent.
"""
answer = "".join(self.words_predicted_answer)
if answer.endswith(self.tokenizer.eos_token):
# text generation is stopped
answer = answer.replace(self.tokenizer.eos_token, "")
if self.text_cleaner:
answer = self.text_cleaner(answer)
return answer
def end(self):
super().end()
self.finished = True
def generate(model: Model, inputs: Dict, cfg: Any, streamer: TextStreamer = None):
with torch.cuda.amp.autocast(
dtype=get_torch_dtype(cfg.environment.mixed_precision_dtype)
):
output = model.generate(batch=inputs, cfg=cfg, streamer=streamer).detach().cpu()
return output
async def show_chat_is_running_dialog(q):
q.page["meta"].dialog = ui.dialog(
title="Text Generation is streaming.",
name="chatbot_running_dialog",
items=[
ui.text("Please wait till the text generation has stopped."),
],
closable=True,
)
await q.page.save()
async def show_stream_is_aborted_dialog(q):
q.page["meta"].dialog = ui.dialog(
title="Text Generation will be stopped.",
name="chatbot_stopping_dialog",
items=[
ui.text("Please wait"),
],
closable=False,
)
await q.page.save()
async def is_app_blocked_while_streaming(q: Q):
"""
Check whether the app is blocked with current answer generation.
"""
if (
q.events["experiment/display/chat/chatbot"] is not None
and q.events["experiment/display/chat/chatbot"]["stop"]
and q.client["currently_chat_streaming"]
):
# Cancel the streaming task.
try:
# User clicks abort button while the chat is currently streaming
logger.info("Stopping Chat Stream")
os.environ[EnvVariableStoppingCriteria.stop_streaming_env] = "True"
await show_stream_is_aborted_dialog(q)
await q.page.save()
for _ in range(20): # don't wait longer than 10 seconds
await q.sleep(0.5)
if q.client["currently_chat_streaming"] is None:
q.page["meta"].dialog = None
await q.page.save()
return True
else:
logger.warning("Could not terminate stream")
return True
finally:
if EnvVariableStoppingCriteria.stop_streaming_env in os.environ:
del os.environ[EnvVariableStoppingCriteria.stop_streaming_env]
# Hide the "Stop generating" button.
q.page["experiment/display/chat"].generating = False
elif q.client["experiment/display/chat/finished"] is False:
await show_chat_is_running_dialog(q)
return True
return False