|
import logging |
|
from typing import Any, Dict |
|
|
|
from torch import nn |
|
from transformers import AutoModelForCausalLM |
|
|
|
from llm_studio.src.metrics.text_causal_language_modeling_metrics import Perplexity |
|
from llm_studio.src.utils.data_utils import batch_padding |
|
from llm_studio.src.utils.modeling_utils import ( |
|
create_nlp_backbone, |
|
generate, |
|
prepare_lora, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class Model(nn.Module): |
|
""" |
|
Model for causal language modeling problem type. |
|
""" |
|
|
|
def __init__(self, cfg: Any): |
|
""" |
|
Args: |
|
cfg: config with all the hyperparameters |
|
""" |
|
|
|
super(Model, self).__init__() |
|
|
|
self.cfg = cfg |
|
self.backbone, self.backbone_config = create_nlp_backbone( |
|
cfg, model_class=AutoModelForCausalLM |
|
) |
|
|
|
if cfg.training.lora: |
|
self.backbone = prepare_lora(cfg, self.backbone) |
|
|
|
self.loss_fn = self.cfg.training.loss_class.get( |
|
self.cfg.training.loss_function |
|
)(self.cfg) |
|
|
|
if self.cfg.prediction.metric == "Perplexity": |
|
self.perplexity = Perplexity(self.cfg, reduce=False) |
|
|
|
def init_deepspeed(self): |
|
self.backward = self.backbone.backward |
|
self.save_checkpoint = self.backbone.save_checkpoint |
|
self.save_16bit_model = self.backbone.save_16bit_model |
|
if self.cfg.training.lora: |
|
self.backbone.base_model.model.config = ( |
|
self.backbone.base_model.model.module.config |
|
) |
|
self.backbone.base_model.model.generation_config = ( |
|
self.backbone.base_model.model.module.generation_config |
|
) |
|
else: |
|
self.backbone.config = self.backbone.module.config |
|
self.backbone.generation_config = self.backbone.module.generation_config |
|
|
|
def generate(self, batch: Dict, cfg: Any, streamer=None): |
|
if cfg.environment.use_deepspeed and cfg.training.lora: |
|
return generate(self.backbone.base_model.model, batch, cfg, streamer) |
|
else: |
|
return generate(self.backbone, batch, cfg, streamer) |
|
|
|
def forward( |
|
self, |
|
batch: Dict, |
|
padding: bool = True, |
|
) -> Dict: |
|
|
|
if self.cfg.architecture.gradient_checkpointing: |
|
self.backbone.config.use_cache = False |
|
|
|
outputs: Dict = {} |
|
mask_key = "attention_mask" |
|
pad_keys = [ |
|
"input_ids", |
|
"attention_mask", |
|
"special_tokens_mask", |
|
"labels", |
|
] |
|
|
|
if padding: |
|
batch = batch_padding( |
|
self.cfg, |
|
batch, |
|
self.training, |
|
mask_key=mask_key, |
|
pad_keys=pad_keys, |
|
padding_side=self.cfg.tokenizer._padding_side, |
|
) |
|
|
|
output = self.backbone( |
|
input_ids=batch["input_ids"], |
|
attention_mask=batch["attention_mask"], |
|
) |
|
|
|
if "labels" in batch: |
|
loss = self.loss_fn(output.logits, batch["labels"]) |
|
outputs["loss"] = loss |
|
|
|
if not self.training and self.cfg.prediction.metric == "Perplexity": |
|
outputs["perplexity"] = self.perplexity(output.logits, batch["labels"]) |
|
|
|
|
|
if self.cfg.architecture.gradient_checkpointing: |
|
self.backbone.config.use_cache = True |
|
|
|
return outputs |
|
|