H2OTest / llm_studio /src /possible_values.py
elineve's picture
Upload 301 files
07423df
raw
history blame
8.43 kB
import os
from abc import abstractmethod
from dataclasses import dataclass
from typing import Any, Callable, List, Optional, Sequence, Set, Tuple, Union
from llm_studio.src.nesting import Dependency
def _scan_dirs(dirname) -> List[str]:
"""Scans a directory for subfolders
Args:
dirname: directory name
Returns:
List of subfolders
"""
subfolders = [f.path for f in os.scandir(dirname) if f.is_dir()]
for dirname in list(subfolders):
subfolders.extend(_scan_dirs(dirname))
subfolders = [x + "/" if x[-1] != "/" else x for x in subfolders]
return subfolders
def _scan_files(
dirname, extensions: Tuple[str, ...] = (".csv", ".pq", ".parquet", ".json")
) -> List[str]:
"""Scans a directory for files with given extension
Args:
dirname: directory name
extensions: extensions to consider
Returns:
List of files
"""
path_list = [
os.path.join(dirpath, filename)
for dirpath, _, filenames in os.walk(dirname)
for filename in filenames
if any(map(filename.__contains__, extensions))
and not filename.startswith("__meta_info__")
]
return sorted(path_list)
def strip_prefix(paths: Sequence[str], ignore_set: Set[str] = set()) -> Tuple[str, ...]:
"""
Strips the common prefix of all the given paths.
Args:
paths: the paths to strip
ignore_set: set of path names to ignore when computing the prefix.
Returns:
List with the same length as `paths` without common prefixes.
"""
paths_to_check = [
os.path.split(os.path.normpath(path))[0]
for path in paths
if path not in ignore_set
]
if len(paths_to_check) == 0:
return tuple(paths)
prefix = os.path.commonpath(paths_to_check)
stripped = tuple(
[
path if path in ignore_set else os.path.relpath(path, prefix)
for path in paths
]
)
return stripped
class Value:
pass
@dataclass
class Number:
min: Optional[float] = None
max: Optional[float] = None
step: Union[str, float] = 1.0
@dataclass
class String:
# Each element of the tuple can be either:
# - a tuple of (value, name)
# - a string. In that case the same value will be used for name and value
values: Any = None
allow_custom: bool = False
placeholder: Optional[str] = None
class DatasetValue:
pass
@abstractmethod
def get_value(
self, dataset: Any, value: Any, type_annotation: type, mode: str
) -> Tuple[String, Any]:
pass
@staticmethod
def _compute_current_values(
current_values: List[str],
possible_values: List[str],
prefer_with: Optional[Callable[[str], bool]] = None,
) -> List[str]:
"""
Compute current values.
Args:
current_values: The preliminary current values.
possible_values: All possible values.
prefer_with: Function determining which values to prefer as default.
Returns:
A list
"""
if len(possible_values) == 0:
return [""]
# allow only values which are in the possible values
current_values = list(
filter(lambda value: value in possible_values, current_values)
)
if len(current_values) == 0:
# if the values are empty, take all the values where `prefer_with` is true
for c in possible_values:
if prefer_with is not None and prefer_with(c):
current_values.append(c)
# if they are still empty, just take the first possible value
if len(current_values) == 0:
current_values = [possible_values[0]]
return current_values
@dataclass
class Directories(DatasetValue):
add_none: Union[bool, Callable[[str], bool]] = False
prefer_with: Optional[Callable[[str], bool]] = None
prefer_none: bool = True
def get_value(self, dataset, value, type_annotation, mode) -> Tuple[String, Any]:
if dataset is None:
return String(tuple()), value
available_dirs = _scan_dirs(dataset["path"])
if (isinstance(self.add_none, bool) and self.add_none) or (
callable(self.add_none) and self.add_none(mode)
):
if self.prefer_none:
available_dirs.insert(0, "None")
else:
available_dirs.insert(len(available_dirs), "None")
if isinstance(value, str):
value = [value]
value = DatasetValue._compute_current_values(
value, available_dirs, self.prefer_with
)
return (
String(
tuple(
zip(
available_dirs,
strip_prefix(available_dirs, ignore_set={"None"}),
)
)
),
value if type_annotation == Tuple[str, ...] else value[0],
)
@dataclass
class Files(DatasetValue):
add_none: Union[bool, Callable[[str], bool]] = False
prefer_with: Optional[Callable[[str], bool]] = None
# For the case where no match found, whether to prioritize
# selecting any file or selecting no file
prefer_none: bool = True
def get_value(self, dataset, value, type_annotation, mode) -> Tuple[String, Any]:
if dataset is None:
return String(tuple()), value
available_files = _scan_files(dataset["path"])
if (isinstance(self.add_none, bool) and self.add_none) or (
callable(self.add_none) and self.add_none(mode)
):
if self.prefer_none:
available_files.insert(0, "None")
else:
available_files.insert(len(available_files), "None")
if isinstance(value, str):
value = [value]
value = DatasetValue._compute_current_values(
value, available_files, self.prefer_with
)
return (
String(
tuple(
zip(
available_files,
strip_prefix(available_files, ignore_set={"None"}),
)
)
),
value if type_annotation == Tuple[str, ...] else value[0],
)
@dataclass
class Columns(DatasetValue):
add_none: Union[bool, Callable[[str], bool]] = False
prefer_with: Optional[Callable[[str], bool]] = None
def get_value(self, dataset, value, type_annotation, mode) -> Tuple[String, Any]:
if dataset is None:
return String(tuple()), value
try:
columns = list(dataset["dataframe"].columns)
except KeyError:
columns = []
if (isinstance(self.add_none, bool) and self.add_none) or (
callable(self.add_none) and self.add_none(mode)
):
columns.insert(0, "None")
if isinstance(value, str):
value = [value]
if value is None:
value = [columns[0]]
value = DatasetValue._compute_current_values(value, columns, self.prefer_with)
return (
String(tuple(columns)),
value if type_annotation == Tuple[str, ...] else value[0],
)
@dataclass
class ColumnValue(DatasetValue):
column: str
default: List[str]
prefer_with: Optional[Callable[[str], bool]] = None
dependency: Optional[Dependency] = None
def get_value(self, dataset, value, type_annotation, mode) -> Tuple[String, Any]:
if dataset is None:
return String(tuple()), value
try:
df = dataset["dataframe"]
except KeyError:
df = None
if df is not None:
if self.dependency is not None and not self.dependency.check(
[dataset[self.dependency.key]]
):
values = self.default
elif self.column in df:
values = [str(v) for v in sorted(list(df[self.column].unique()))]
else:
values = self.default
else:
values = self.default
value = DatasetValue._compute_current_values(value, values, self.prefer_with)
return (
String(tuple(values)),
value if type_annotation == Tuple[str, ...] else value[0],
)