H2OTest / train.py
elineve's picture
Upload 301 files
07423df
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import argparse
import gc
import logging
import sys
import time
from distutils import util
from typing import Any, Callable, Dict, Tuple
import deepspeed
import numpy as np
import pandas as pd
import torch
from torch.cuda.amp import GradScaler, autocast
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers.deepspeed import HfDeepSpeedConfig
from llm_studio.src.loggers import MainLogger
from llm_studio.src.utils.config_utils import (
load_config_py,
load_config_yaml,
save_config_yaml,
)
from llm_studio.src.utils.data_utils import (
get_data,
get_inference_batch_size,
get_train_dataloader,
get_train_dataset,
get_val_dataloader,
get_val_dataset,
)
from llm_studio.src.utils.exceptions import LLMTrainingException
from llm_studio.src.utils.export_utils import save_prediction_outputs
from llm_studio.src.utils.gpu_utils import sync_across_processes
from llm_studio.src.utils.logging_utils import (
TqdmToLogger,
initialize_logging,
log_plot,
write_flag,
)
from llm_studio.src.utils.modeling_utils import (
activate_neftune,
check_disk_space,
get_ds_config,
get_number_of_validation_epochs,
get_optimizer,
get_scheduler,
get_torch_dtype,
load_checkpoint,
run_inference,
save_checkpoint,
save_predictions,
wrap_model_distributed,
)
from llm_studio.src.utils.utils import kill_ddp_processes, set_environment, set_seed
logger = logging.getLogger(__name__)
def run_eval(
cfg,
model: torch.nn.Module,
val_dataloader: DataLoader,
val_df: pd.DataFrame,
mode: str = "validation",
) -> Tuple:
"""Runs the evaluation loop.
Args:
cfg: config object
model: trained model
val_dataloader: validation Dataloader
val_df: validation DataFrame
mode: validation
Returns:
Validation loss
"""
with torch.no_grad():
is_training = model.training
model.eval()
val_data: Dict[str, Any] = run_inference(
cfg, model, val_dataloader, mode
) # type: ignore
model.train(is_training)
# Sync validation predictions across GPUs
if cfg.environment._distributed and cfg.environment._distributed_inference:
for key, value in val_data.items():
val_data[key] = sync_across_processes(
value, cfg.environment._world_size, group=cfg.environment._cpu_comm
)
if cfg.environment._local_rank != 0:
# data has been synced, so we can return early on other ranks
if cfg.environment._distributed:
torch.distributed.barrier()
return 0, 0
# Drop any extra observations
for k, v in val_data.items():
val_data[k] = v[: len(val_dataloader.dataset)] # type: ignore
val_data = val_dataloader.dataset.postprocess_output( # type: ignore
cfg=cfg, df=val_df, output=val_data
)
val_loss = np.mean(val_data.get("loss", torch.tensor(0)).float().cpu().numpy())
# postprocess_output only runs on rank 0 to save time/memory
val_metric = np.mean(val_data["metrics"])
logger.info(f"{mode.capitalize()} {cfg.prediction.metric}: {val_metric:.5f}")
for key in val_data:
if key.startswith("additional_log_") or key == "loss":
value = np.mean(val_data[key].float().cpu().numpy())
key = key.replace("additional_log_", "")
logger.info(f"Mean {mode} {key}: {value:.5f}")
cfg.logging._logger.log(
mode,
key,
value,
step=cfg.environment._curr_step,
)
cfg.logging._logger.log(
mode, cfg.prediction.metric, val_metric, step=cfg.environment._curr_step
)
# Log plots
if val_df is not None:
plot = cfg.logging.plots_class.plot_validation_predictions(
val_outputs=val_data, cfg=cfg, val_df=val_df, mode="validation"
)
log_plot(cfg, plot, "validation_predictions")
save_predictions(cfg, val_data, val_dataloader, val_df, mode)
if cfg.environment._distributed:
torch.distributed.barrier()
return val_loss, val_metric
def run_train(
cfg: Any,
model: torch.nn.Module,
optimizer,
scheduler,
epoch_steps,
train_dataloader,
val_dataloader,
val_df: pd.DataFrame,
):
"""Runs the training loop.
Args:
cfg: config object
model: model
train_dataloader: custom training Dataloader
train_df: train DataFrame
val_dataloader: custom validation Dataloader
val_df: validation DataFrame
Returns:
Validation prediction output
Validation loss
Validation metric
Last train batch
"""
if (
hasattr(cfg.augmentation, "neftune_noise_alpha")
and cfg.augmentation.neftune_noise_alpha > 0
):
activate_neftune(model, cfg.augmentation.neftune_noise_alpha)
scaler: GradScaler | None = None
if cfg.environment.mixed_precision:
scaler = GradScaler(
enabled=(cfg.environment.mixed_precision_dtype == "float16")
)
optimizer.zero_grad(set_to_none=True)
# Prepare NLP Augmentation
nlp_augment = None
if hasattr(cfg.augmentation, "nlp_augmentations_class"):
nlp_augment = cfg.augmentation.nlp_augmentations_class(cfg=cfg)
start_epoch = 0
_, metric_mode, _ = cfg.prediction.metric_class.get(cfg.prediction.metric)
objective_op: Callable[[float, float], bool]
if metric_mode == "max":
best_val_metric = -np.inf
objective_op = np.greater
else:
best_val_metric = np.inf
objective_op = np.less
if cfg.training.evaluate_before_training:
val_loss, val_metric = run_eval(
cfg=cfg, model=model, val_dataloader=val_dataloader, val_df=val_df
)
for epoch in range(start_epoch, cfg.training.epochs):
set_seed(
cfg.environment._seed
+ epoch * cfg.environment._world_size * cfg.environment.number_of_workers
+ cfg.environment._local_rank * cfg.environment.number_of_workers
)
if cfg.environment._local_rank == 0:
logger.info(f"Training Epoch: {epoch + 1} / {cfg.training.epochs}")
if (
cfg.environment._distributed
and not cfg.environment.use_deepspeed
and hasattr(train_dataloader.sampler, "set_epoch")
):
train_dataloader.sampler.set_epoch(epoch) # type: ignore
tqdm_out = TqdmToLogger(logger, level=logging.INFO)
progress_bar = tqdm(
total=epoch_steps,
disable=cfg.environment._local_rank != 0,
file=tqdm_out,
ascii=True,
desc="train loss",
mininterval=0,
)
tr_it = iter(train_dataloader)
losses = []
model.train()
log_update_steps = max(epoch_steps // 20, 1)
evaluation_step = max(int(epoch_steps * cfg.training.evaluation_epochs), 1)
logger.info(f"Evaluation step: {evaluation_step}")
for itr, data in enumerate(tr_it):
cfg.environment._curr_step += (
cfg.training.batch_size * cfg.environment._world_size
)
# Batch to device
batch = cfg.dataset.dataset_class.batch_to_device(
data, cfg.environment._device
)
# NLP augmentation
if nlp_augment is not None:
batch = nlp_augment(batch)
# Plot first batch
if epoch == 0 and itr == 0 and cfg.environment._local_rank == 0:
plot = cfg.logging.plots_class.plot_batch(batch=batch, cfg=cfg)
log_plot(cfg, plot, "train_data")
# only need to sync gradients at last step of grad accumulation
model.require_backward_grad_sync = itr % cfg.training.grad_accumulation == 0
# Forward pass
with autocast(
enabled=cfg.environment.mixed_precision,
dtype=get_torch_dtype(cfg.environment.mixed_precision_dtype),
):
output_dict = model.forward(batch)
loss = output_dict["loss"]
if ~np.isfinite(loss.item()) and (epoch > start_epoch or itr > 20):
raise LLMTrainingException(
"NaN caught in loss during training. "
"Please, reduce learning rate, change dtype, "
"or disable mixed precision. Alternatively, "
"gradient clipping may help to stabilize training."
)
losses.append(loss.item())
# loss is a mean loss per batch/sample
# as grad_accumulations sums up the gradients, this loss must be scaled
# by the number of grad_accumulations, to have similar behavior for
# BS * grad_accumulations = const.
if cfg.training.grad_accumulation != 1:
loss = loss / cfg.training.grad_accumulation
# Backward pass
if (
cfg.environment.mixed_precision
and len(cfg.environment.gpus)
and not cfg.environment.use_deepspeed
):
scaler.scale(loss).backward() # type: ignore
if itr % cfg.training.grad_accumulation == 0:
if cfg.training.gradient_clip > 0:
scaler.unscale_(optimizer) # type: ignore
torch.nn.utils.clip_grad_norm_(
model.parameters(), cfg.training.gradient_clip
)
scaler.step(optimizer) # type: ignore
scaler.update()
optimizer.zero_grad(set_to_none=True)
else:
if cfg.environment.use_deepspeed:
model.backward(loss) # type: ignore[operator]
else:
loss.backward()
if itr % cfg.training.grad_accumulation == 0:
if cfg.training.gradient_clip > 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), cfg.training.gradient_clip
)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
if cfg.environment._distributed:
torch.cuda.synchronize(device=cfg.environment._local_rank)
if scheduler is not None:
scheduler.step()
if cfg.environment._local_rank == 0:
cfg.logging._logger.log(
"train", "loss", losses[-1], step=cfg.environment._curr_step
)
cfg.logging._logger.log(
"meta",
"lr",
optimizer.param_groups[0]["lr"],
step=cfg.environment._curr_step,
)
if cfg.training.differential_learning_rate_layers:
cfg.logging._logger.log(
"meta",
"lr_diff",
optimizer.param_groups[2]["lr"],
step=cfg.environment._curr_step,
)
cfg.logging._logger.log(
"internal",
"current_step",
cfg.environment._curr_step,
step=cfg.environment._curr_step,
)
for key in output_dict:
if key.startswith("additional_log_"):
cfg.logging._logger.log(
"train",
key.replace("additional_log_", ""),
output_dict[key].item(),
step=cfg.environment._curr_step,
)
# Show logs each 5% of the epoch (only if doing per epoch evaluation)
if (itr + 1) % log_update_steps == 0 or itr == epoch_steps - 1:
progress_bar.set_description(
f"train loss: {np.mean(losses[-10:]):.2f}", refresh=False
)
if (itr + 1) % log_update_steps == 0:
progress_bar.update(log_update_steps)
else:
progress_bar.update(epoch_steps % log_update_steps)
del output_dict
# Validation loop
if (itr + 1) % evaluation_step == 0:
if cfg.training.evaluation_epochs == 1:
progress_bar.close()
# TODO: Move back after fixing slow generation of deepspeed.
if not cfg.training.save_best_checkpoint:
checkpoint_path = cfg.output_directory
if cfg.environment._local_rank == 0:
logger.info(
f"Saving last model checkpoint to {checkpoint_path}"
)
save_checkpoint(model=model, path=checkpoint_path, cfg=cfg)
val_loss, val_metric = run_eval(
cfg=cfg, model=model, val_dataloader=val_dataloader, val_df=val_df
)
if cfg.training.save_best_checkpoint:
if objective_op(val_metric, best_val_metric):
checkpoint_path = cfg.output_directory
if cfg.environment._local_rank == 0:
logger.info(
f"Saving best model checkpoint: "
f"val_{cfg.prediction.metric} {best_val_metric:.5} -> "
f"{val_metric:.5} to {checkpoint_path}"
)
save_checkpoint(model=model, path=checkpoint_path, cfg=cfg)
best_val_metric = val_metric
model.train()
progress_bar.close()
del progress_bar
if cfg.environment._distributed:
torch.cuda.synchronize(device=cfg.environment._local_rank)
torch.distributed.barrier()
if cfg.environment._local_rank == 0:
cfg.logging._logger.log(
"internal", "epoch", epoch + 1, step=cfg.environment._curr_step
)
if cfg.environment._distributed:
torch.distributed.barrier()
return val_loss, val_metric
def run(cfg: Any) -> None:
"""Runs the routine.
Args:
cfg: config object with all the hyperparameters
"""
if cfg.problem_type == "text_rlhf_language_modeling":
raise DeprecationWarning(
"text_rlhf_language_modeling is deprecated. "
"Please use DPO Modeling instead."
)
os.makedirs(cfg.output_directory, exist_ok=True)
# Force evaluation if user trains 0 epochs
cfg.training.evaluate_before_training = (
cfg.training.evaluate_before_training or cfg.training.epochs == 0
)
# Set the random seed for reproducibility
# either random seed when user set it -1 or deterministic user chosen seed
if cfg.environment.seed < 0:
cfg.environment._seed = np.random.randint(1_000_000)
else:
cfg.environment._seed = cfg.environment.seed
if (
cfg.architecture.backbone_dtype in ["int8", "int4"]
and cfg.environment.use_deepspeed
):
raise ValueError(
f"Deepspeed do not support backbone type {cfg.architecture.backbone_dtype}."
+ " Please set backbone type to float16 or bfloat16 for using deepspeed."
)
# Prepare environment
if "WORLD_SIZE" in os.environ:
cfg.environment._distributed = int(os.environ["WORLD_SIZE"]) > 1
else:
cfg.environment._distributed = False
if cfg.environment._distributed:
cfg.environment._local_rank = int(os.environ["LOCAL_RANK"])
cfg.environment._device = "cuda:%d" % cfg.environment._local_rank
if cfg.environment.use_deepspeed:
deepspeed.init_distributed()
else:
torch.distributed.init_process_group(backend="nccl", init_method="env://")
cfg.environment._cpu_comm = torch.distributed.new_group(backend="gloo")
cfg.environment._world_size = torch.distributed.get_world_size()
cfg.environment._rank = torch.distributed.get_rank()
torch.cuda.set_device(cfg.environment._rank)
logger.info(
f"Training in distributed mode with multiple processes, "
f"1 GPU per process. Process {cfg.environment._rank}, "
f"total: {cfg.environment._world_size} "
f"local rank: {cfg.environment._local_rank}."
)
# Sync the random seed
cfg.environment._seed = int(
sync_across_processes(
np.array([cfg.environment._seed]),
cfg.environment._world_size,
group=cfg.environment._cpu_comm,
)[0]
)
else:
cfg.environment._local_rank = 0
cfg.environment._device = (
"cuda:0"
if (torch.cuda.is_available() and len(cfg.environment.gpus) > 0)
else "cpu"
)
if cfg.environment._device == "cpu":
logger.warning("Training on CPU. This will be slow.")
set_seed(cfg.environment._seed)
if cfg.environment._local_rank == 0:
logger.info(f"Problem Type: {cfg.problem_type}")
logger.info(f"Global random seed: {cfg.environment._seed}")
cfg = set_environment(cfg)
# we need to get train dataframe and number of labels if not set or in training mode
if cfg.environment._local_rank == 0:
logger.info("Preparing the data...")
train_df, val_df = get_data(cfg)
if (
len(val_df) > int(os.getenv("GPT_EVAL_MAX", 100))
and "GPT" in cfg.prediction.metric
):
logger.warning(
f"More than {os.getenv('GPT_EVAL_MAX', 100)} validation records. "
"Safeguarding against OpenAI API costs. Setting metric to BLEU. "
"Change GPT_EVAL_MAX to run GPT validation."
)
cfg.prediction.metric = "BLEU"
# prepare data
if cfg.environment._local_rank == 0:
logger.info("Preparing train and validation data")
train_dataset = get_train_dataset(train_df=train_df, cfg=cfg)
val_dataset = get_val_dataset(val_df=val_df, cfg=cfg)
train_dataloader = get_train_dataloader(train_ds=train_dataset, cfg=cfg)
val_dataloader = get_val_dataloader(val_ds=val_dataset, cfg=cfg)
if cfg.environment._local_rank == 0:
total_training_steps = (
cfg.training.epochs
* len(train_dataloader)
* cfg.training.batch_size
* cfg.environment._world_size
)
num_eval_epochs = get_number_of_validation_epochs(
training_epochs=cfg.training.epochs,
evaluation_epochs=cfg.training.evaluation_epochs,
)
val_batch_size = get_inference_batch_size(cfg)
# if zero shot, validate once before training
total_validation_steps = (
len(val_dataloader)
* (num_eval_epochs + int(cfg.training.evaluate_before_training))
* val_batch_size
* cfg.environment._world_size
)
# Prepare model and optimizer
if cfg.environment.use_deepspeed:
ds_config = get_ds_config(cfg)
# keep this object alive.
dschf = HfDeepSpeedConfig(ds_config) # noqa: F841
with torch.device(cfg.environment._device):
model = cfg.architecture.model_class(cfg)
check_disk_space(model, cfg.output_directory)
# load model weights
if cfg.architecture.pretrained_weights != "":
# Do not load strictly if continue training from the previous experiment
load_checkpoint(cfg, model, strict=cfg.training.epochs == -1)
model.to(cfg.environment._device)
epoch_steps = len(train_dataloader)
optimizer = get_optimizer(model=model, cfg=cfg)
scheduler = get_scheduler(cfg=cfg, optimizer=optimizer, epoch_steps=epoch_steps)
if getattr(cfg.architecture, "force_embedding_gradients"):
for module in model.modules():
if isinstance(module, torch.nn.Embedding):
for param in module.parameters():
param.requires_grad = True
param.data = param.data.float()
if cfg.environment._distributed:
(
model,
optimizer,
train_dataloader,
val_dataloader,
scheduler,
) = wrap_model_distributed(
model=model,
optimizer=optimizer,
lr_scheduler=scheduler,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
cfg=cfg,
)
if cfg.environment.compile_model:
# deepspeed do not support torch.compile
if cfg.environment.use_deepspeed:
logger.warning(
"Deepspeed is active, but it doesn't support torch.compile."
"Skipping compilation for this experiment."
)
else:
if cfg.environment._distributed:
model.module.backbone = torch.compile(model.module.backbone)
else:
model.backbone = torch.compile(model.backbone)
# Force settings when saving best checkpoint
if cfg.training.save_best_checkpoint:
cfg.training.train_validation_data = False
# reset steps
cfg.environment._curr_step = 0
cfg.environment._curr_val_step = 0
gc.collect()
global_start_time = time.time()
if cfg.environment._local_rank == 0:
# re-save cfg
save_config_yaml(f"{cfg.output_directory}/cfg.yaml", cfg)
cfg.logging._logger = MainLogger(cfg)
cfg.logging._logger.log(
"internal", "total_training_steps", total_training_steps, step=0
)
cfg.logging._logger.log(
"internal", "total_validation_steps", total_validation_steps, step=0
)
cfg.logging._logger.log(
"internal",
"global_start_time",
global_start_time,
step=cfg.environment._curr_step,
)
# re-save config
save_config_yaml(f"{cfg.output_directory}/cfg.yaml", cfg)
val_loss, val_metric = run_train(
cfg=cfg,
model=model,
optimizer=optimizer,
scheduler=scheduler,
epoch_steps=epoch_steps,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
val_df=val_df,
)
# reset external logging
if cfg.environment._local_rank == 0:
cfg.logging._logger.reset_external()
experiment_path = f"{cfg.output_directory}"
if cfg.training.epochs == 0:
checkpoint_path = cfg.output_directory
if cfg.environment._local_rank == 0:
logger.info(f"Saving last model checkpoint to {checkpoint_path}")
save_checkpoint(model=model, path=checkpoint_path, cfg=cfg)
if cfg.environment._local_rank == 0:
save_config_yaml(f"{cfg.output_directory}/cfg.yaml", cfg)
save_prediction_outputs(cfg.experiment_name, experiment_path)
flag_path = os.path.join(cfg.output_directory, "flags.json")
write_flag(flag_path, "status", "finished")
time_took = time.time() - global_start_time
if time_took > 86400:
# if more than one day, show days
# need to subtract 1 day from time_took since strftime shows day of year
# which starts counting at 1
time_took_formatted = time.strftime(
"%-jd %H:%M:%S", time.gmtime(float(time_took - 86400))
)
else:
time_took_formatted = time.strftime(
"%H:%M:%S", time.gmtime(float(time_took))
)
write_flag(flag_path, "info", f"Runtime: {time_took_formatted}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument(
"-C", "--config", help="config filename", default=argparse.SUPPRESS
)
parser.add_argument("-Y", "--yaml", help="yaml filename", default=argparse.SUPPRESS)
parser_args, unknown = parser.parse_known_args(sys.argv)
if "config" in parser_args:
cfg = load_config_py(parser_args.config)
elif "yaml" in parser_args:
cfg = load_config_yaml(parser_args.yaml)
else:
raise ValueError("Please, provide a configuration file")
extra_args = []
for arg_orig in unknown:
if arg_orig.startswith(("-", "--")):
arg = arg_orig.replace("-", "").split(".")
try:
arg_type = getattr(cfg, arg[0]).get_annotations()[arg[1]]
except (AttributeError, KeyError):
continue
if arg_type == bool:
parser.add_argument(arg_orig, type=util.strtobool)
else:
parser.add_argument(arg_orig, type=arg_type)
extra_args.append(arg)
args = parser.parse_args()
for arg in extra_args:
value = getattr(args, ".".join(arg))
setattr(getattr(cfg, arg[0]), arg[1], value)
out_dir = cfg.output_directory
os.makedirs(out_dir, exist_ok=True)
initialize_logging(cfg)
try:
run(cfg=cfg)
except Exception:
logging.error("Exception occurred during the run:", exc_info=True)
if ("WORLD_SIZE" in os.environ) and (int(os.environ["WORLD_SIZE"]) > 1):
kill_ddp_processes()