Spaces:
Build error
Build error
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer, util | |
import nltk | |
from nltk import sent_tokenize | |
nltk.download("punkt") | |
# Loading in dataframes | |
krishnamurti_df = pd.read_json("krishnamurti_df.json") | |
stoic_df = pd.read_json("stoic_df.json") | |
# Loading in sentence_similarity model | |
sentence_similarity_model = "all-mpnet-base-v2" | |
model = SentenceTransformer(sentence_similarity_model) | |
# Loading in text-generation models | |
stoic_generator = pipeline("text-generation", model="eliwill/stoic-generator-10e") | |
krishnamurti_generator = pipeline("text-generation", model="distilgpt2") | |
# Creating philosopher dictionary | |
philosopher_dictionary = { | |
"stoic": { | |
"generator": stoic_generator, | |
"dataframe": stoic_df | |
}, | |
"krishnamurti": { | |
"generator": krishnamurti_generator, | |
"dataframe": krishnamurti_df | |
} | |
} | |
############### DEFINING FUNCTIONS ########################### | |
def ask_philosopher(philosopher, question): | |
""" Return first 5 sentences generated by question for the given philosopher model """ | |
generator = philosopher_dictionary[philosopher]['generator'] | |
answer = generator(question, min_length=100, max_length=120)[0]['generated_text'] # generate about 50 word tokens | |
answer = " ".join(sent_tokenize(answer)[:6]) # Get the first five sentences | |
return answer | |
def get_similar_quotes(philosopher, question): | |
""" Return top 3 most similar quotes to the question from a philosopher's dataframe """ | |
df = philosopher_dictionary[philosopher]['dataframe'] | |
question_embedding = model.encode(question) | |
sims = [util.dot_score(question_embedding, quote_embedding) for quote_embedding in df['Embedding']] | |
ind = np.argpartition(sims, -3)[-3:] | |
similar_sentences = [df['quote'][i] for i in ind] | |
top3quotes = pd.DataFrame(data = similar_sentences, columns=["Quotes"], index=range(1,4)) | |
top3quotes['Quotes'] = top3quotes['Quotes'].str[:-1].str[:250] + "..." | |
return top3quotes | |
def main(question, philosopher): | |
out_image = "marcus-aurelius.jpg" | |
return ask_philosopher(philosopher, question), get_similar_quotes(philosopher, question), out_image | |
with gr.Blocks(css=".gradio-container {background-image: url('file=mountains_resized.jpg')} #title {color: white}") as demo: | |
gr.Markdown(""" | |
# Ask a Philsopher | |
""", elem_id="title" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
inp1 = gr.Textbox(placeholder="Place your question here...", label="Ask a question") | |
inp2 = gr.Dropdown(choices=["stoic", "krishnamurti"], value="stoic", label="Choose a philosopher") | |
out_image = gr.Image() | |
with gr.Column(): | |
out1 = gr.Textbox( | |
lines=3, | |
max_lines=10, | |
label="Answer" | |
) | |
out2 = gr.DataFrame( | |
headers=["Quotes"], | |
max_rows=5, | |
interactive=False, | |
wrap=True) | |
btn = gr.Button("Run") | |
btn.click(fn=main, inputs=[inp1,inp2], outputs=[out1,out2,out_image]) | |
demo.launch() |