elizabetvaganova commited on
Commit
551adb2
1 Parent(s): 986912d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -16
app.py CHANGED
@@ -2,35 +2,26 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
-
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
-
23
 
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
-
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
+ from espnet2.bin.tts_inference import Text2Speech
6
+ from transformers import pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ tts_model = Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best")
 
 
 
 
 
 
 
16
 
17
  def translate(audio):
18
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
19
  return outputs["text"]
20
 
 
21
  def synthesise(text):
22
+ with torch.no_grad():
23
+ wav = tts_model(text)["wav"]
24
+ return wav.view(-1).cpu()
 
25
 
26
  def speech_to_speech_translation(audio):
27
  translated_text = translate(audio)