avantGAN / model.py
Elle McFarlane
fix avantgan
da5b2c1
# from https://huggingface.co/spaces/hysts/StyleGAN3/blob/main/model.py
import pathlib
import pickle
import sys
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
import torch
import torchvision.utils as vutils
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
current_dir = pathlib.Path(__file__).parent
submodule_dir = current_dir / "stylegan3"
sys.path.insert(0, submodule_dir.as_posix())
user = "ellemac"
dcgan_z_dim = 100
dcgan_gen_feats = 64
ngf = 64
dcgan_img_size = 64
nc = 3
# class Generator(nn.Module):
# def __init__(self, ngpu, nz):
# super(Generator, self).__init__()
# self.ngpu = ngpu
# self.main = nn.Sequential(
# # input is Z, going into a convolution
# nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
# nn.BatchNorm2d(ngf * 8),
# nn.LeakyReLU(0.2, inplace=True),
# # state size. (ngf*8) x 4 x 4
# nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
# nn.BatchNorm2d(ngf * 4),
# nn.LeakyReLU(0.2, inplace=True),
# # state size. (ngf*4) x 8 x 8
# nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
# nn.BatchNorm2d(ngf * 2),
# nn.LeakyReLU(0.2, inplace=True),
# # state size. (ngf*2) x 16 x 16
# nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
# nn.BatchNorm2d(ngf),
# nn.LeakyReLU(0.2, inplace=True),
# # state size. (ngf) x 32 x 32
# nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
# nn.Tanh()
# # state size. (nc) x 64 x 64
# )
# def forward(self, input):
# return self.main(input)
class Generator(nn.Module):
def __init__(self, n_gen_feats, n_gpu, z_dim, n_channels):
super(Generator, self).__init__()
self.n_gpu = n_gpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(z_dim, n_gen_feats * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(n_gen_feats * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (n_gen_feats*8) x 4 x 4
nn.ConvTranspose2d(n_gen_feats * 8, n_gen_feats * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_gen_feats * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (n_gen_feats*4) x 8 x 8
nn.ConvTranspose2d(n_gen_feats * 4, n_gen_feats * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_gen_feats * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (n_gen_feats*2) x 16 x 16
nn.ConvTranspose2d(n_gen_feats * 2, n_gen_feats, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_gen_feats),
nn.LeakyReLU(0.2, inplace=True),
# state size. (n_gen_feats) x 32 x 32
nn.ConvTranspose2d(n_gen_feats, n_channels, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (n_channels) x 64 x 64
)
def forward(self, input):
return self.main(input)
class Model:
MODEL_DICT = {
"stylegan3-abstract": {"name": "abstract-560eps.pkl", "repo": "avantStyleGAN3"},
"stylegan3-high-fidelity": {"name": "high-fidelity-1120eps.pkl", "repo": "avantStyleGAN3"},
"ada-dcgan": {"name": "gen_6kepoch.pt", "repo": "avantGAN"},
}
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self._download_all_models()
self.model_name = "ada-dcgan" #stylegan3-abstract"
self.model = self._load_model(self.model_name)
def _load_model(self, model_name: str) -> nn.Module:
file_name = self.MODEL_DICT[model_name]["name"]
repo = self.MODEL_DICT[model_name]["repo"]
path = hf_hub_download(f"{user}/{repo}", file_name) # model repo-type
if "stylegan" in model_name:
with open(path, "rb") as f:
model = pickle.load(f)["G_ema"]
else:
# todo (elle): don't hardcode the config
model = Generator(dcgan_gen_feats, 1, dcgan_z_dim, 3)
# model = Generator(0, 100)
model.load_state_dict(torch.load(path, map_location=self.device))
model.eval()
model.to(self.device)
return model
def set_model(self, model_name: str) -> None:
if model_name == self.model_name:
return
self.model_name = model_name
self.model = self._load_model(model_name)
def _download_all_models(self):
for name in self.MODEL_DICT.keys():
self._load_model(name)
@staticmethod
def make_transform(translate: tuple[float, float] = (0,0), angle: float = 0) -> np.ndarray:
mat = np.eye(3)
sin = np.sin(angle / 360 * np.pi * 2)
cos = np.cos(angle / 360 * np.pi * 2)
mat[0][0] = cos
mat[0][1] = sin
mat[0][2] = translate[0]
mat[1][0] = -sin
mat[1][1] = cos
mat[1][2] = translate[1]
return mat
def generate_z(self, seed: int) -> torch.Tensor:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = np.random.RandomState(seed).randn(1, self.model.z_dim)
return torch.from_numpy(z).float().to(self.device)
def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return tensor.cpu().numpy()
def set_transform(self, tx: float = 0, ty: float = 0, angle: float = 0) -> None:
mat = self.make_transform((tx, ty), angle)
mat = np.linalg.inv(mat)
self.model.synthesis.input.transform.copy_(torch.from_numpy(mat))
@torch.inference_mode()
def generate(self, z: torch.Tensor, label: torch.Tensor, truncation_psi: float) -> torch.Tensor:
return self.model(z, label, truncation_psi=truncation_psi)
def generate_image(self, seed: int, truncation_psi: float = 0, tx: float = 0, ty: float = 0, angle: float = 0) -> np.ndarray:
self.set_transform(tx, ty, angle)
z = self.generate_z(seed)
label = torch.zeros([1, self.model.c_dim], device=self.device)
out = self.generate(z, label, truncation_psi)
out = self.postprocess(out)
return out[0]
def dcgan_generate_image(self, seed: int) -> np.ndarray:
torch.manual_seed(seed)
if self.device == 'cuda':
torch.cuda.manual_seed(seed)
with torch.no_grad():
n_images = 1
z = torch.randn(n_images, dcgan_z_dim, 1, 1, device=self.device)
fake_images = self.model(z.to(self.device)).cpu()
fake_images = fake_images.view(fake_images.size(0), 3, dcgan_img_size, dcgan_img_size)
# Create a grid of images
grid = vutils.make_grid(fake_images, normalize=True)
# Plot the grid and save it to a buffer
fig, ax = plt.subplots()
ax.imshow(grid.permute(1, 2, 0)) # Convert from CHW to HWC for imshow
plt.axis('off')
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Load the buffer into a PIL Image
img = Image.open(buf)
return img
def set_model_and_generate_image(
self, model_name: str, seed: int, truncation_psi: float = 0, tx: float = 0, ty: float = 0, angle: float = 0
) -> np.ndarray:
self.set_model(model_name)
if "stylegan3" in model_name:
return self.generate_image(seed, truncation_psi, tx, ty, angle)
else:
return self.dcgan_generate_image(seed)