|
|
|
|
|
import pathlib |
|
import pickle |
|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
|
|
import torch |
|
import torchvision.utils as vutils |
|
import matplotlib.pyplot as plt |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
current_dir = pathlib.Path(__file__).parent |
|
submodule_dir = current_dir / "stylegan3" |
|
sys.path.insert(0, submodule_dir.as_posix()) |
|
|
|
user = "ellemac" |
|
dcgan_z_dim = 100 |
|
dcgan_gen_feats = 64 |
|
ngf = 64 |
|
dcgan_img_size = 64 |
|
nc = 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__(self, n_gen_feats, n_gpu, z_dim, n_channels): |
|
super(Generator, self).__init__() |
|
self.n_gpu = n_gpu |
|
self.main = nn.Sequential( |
|
|
|
nn.ConvTranspose2d(z_dim, n_gen_feats * 8, 4, 1, 0, bias=False), |
|
nn.BatchNorm2d(n_gen_feats * 8), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(n_gen_feats * 8, n_gen_feats * 4, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(n_gen_feats * 4), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(n_gen_feats * 4, n_gen_feats * 2, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(n_gen_feats * 2), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(n_gen_feats * 2, n_gen_feats, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(n_gen_feats), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(n_gen_feats, n_channels, 4, 2, 1, bias=False), |
|
nn.Tanh() |
|
|
|
) |
|
|
|
def forward(self, input): |
|
return self.main(input) |
|
|
|
class Model: |
|
MODEL_DICT = { |
|
"stylegan3-abstract": {"name": "abstract-560eps.pkl", "repo": "avantStyleGAN3"}, |
|
"stylegan3-high-fidelity": {"name": "high-fidelity-1120eps.pkl", "repo": "avantStyleGAN3"}, |
|
"ada-dcgan": {"name": "gen_6kepoch.pt", "repo": "avantGAN"}, |
|
} |
|
|
|
def __init__(self): |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self._download_all_models() |
|
self.model_name = "ada-dcgan" |
|
self.model = self._load_model(self.model_name) |
|
|
|
def _load_model(self, model_name: str) -> nn.Module: |
|
file_name = self.MODEL_DICT[model_name]["name"] |
|
repo = self.MODEL_DICT[model_name]["repo"] |
|
path = hf_hub_download(f"{user}/{repo}", file_name) |
|
if "stylegan" in model_name: |
|
with open(path, "rb") as f: |
|
model = pickle.load(f)["G_ema"] |
|
else: |
|
|
|
model = Generator(dcgan_gen_feats, 1, dcgan_z_dim, 3) |
|
|
|
model.load_state_dict(torch.load(path, map_location=self.device)) |
|
|
|
model.eval() |
|
model.to(self.device) |
|
return model |
|
|
|
def set_model(self, model_name: str) -> None: |
|
if model_name == self.model_name: |
|
return |
|
self.model_name = model_name |
|
self.model = self._load_model(model_name) |
|
|
|
def _download_all_models(self): |
|
for name in self.MODEL_DICT.keys(): |
|
self._load_model(name) |
|
|
|
@staticmethod |
|
def make_transform(translate: tuple[float, float] = (0,0), angle: float = 0) -> np.ndarray: |
|
mat = np.eye(3) |
|
sin = np.sin(angle / 360 * np.pi * 2) |
|
cos = np.cos(angle / 360 * np.pi * 2) |
|
mat[0][0] = cos |
|
mat[0][1] = sin |
|
mat[0][2] = translate[0] |
|
mat[1][0] = -sin |
|
mat[1][1] = cos |
|
mat[1][2] = translate[1] |
|
return mat |
|
|
|
def generate_z(self, seed: int) -> torch.Tensor: |
|
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) |
|
z = np.random.RandomState(seed).randn(1, self.model.z_dim) |
|
return torch.from_numpy(z).float().to(self.device) |
|
|
|
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: |
|
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
return tensor.cpu().numpy() |
|
|
|
def set_transform(self, tx: float = 0, ty: float = 0, angle: float = 0) -> None: |
|
mat = self.make_transform((tx, ty), angle) |
|
mat = np.linalg.inv(mat) |
|
self.model.synthesis.input.transform.copy_(torch.from_numpy(mat)) |
|
|
|
@torch.inference_mode() |
|
def generate(self, z: torch.Tensor, label: torch.Tensor, truncation_psi: float) -> torch.Tensor: |
|
return self.model(z, label, truncation_psi=truncation_psi) |
|
|
|
def generate_image(self, seed: int, truncation_psi: float = 0, tx: float = 0, ty: float = 0, angle: float = 0) -> np.ndarray: |
|
self.set_transform(tx, ty, angle) |
|
|
|
z = self.generate_z(seed) |
|
label = torch.zeros([1, self.model.c_dim], device=self.device) |
|
|
|
out = self.generate(z, label, truncation_psi) |
|
out = self.postprocess(out) |
|
return out[0] |
|
|
|
def dcgan_generate_image(self, seed: int) -> np.ndarray: |
|
torch.manual_seed(seed) |
|
if self.device == 'cuda': |
|
torch.cuda.manual_seed(seed) |
|
|
|
with torch.no_grad(): |
|
n_images = 1 |
|
z = torch.randn(n_images, dcgan_z_dim, 1, 1, device=self.device) |
|
fake_images = self.model(z.to(self.device)).cpu() |
|
fake_images = fake_images.view(fake_images.size(0), 3, dcgan_img_size, dcgan_img_size) |
|
|
|
grid = vutils.make_grid(fake_images, normalize=True) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
ax.imshow(grid.permute(1, 2, 0)) |
|
plt.axis('off') |
|
|
|
|
|
buf = BytesIO() |
|
plt.savefig(buf, format='png') |
|
buf.seek(0) |
|
|
|
|
|
img = Image.open(buf) |
|
return img |
|
|
|
def set_model_and_generate_image( |
|
self, model_name: str, seed: int, truncation_psi: float = 0, tx: float = 0, ty: float = 0, angle: float = 0 |
|
) -> np.ndarray: |
|
self.set_model(model_name) |
|
if "stylegan3" in model_name: |
|
return self.generate_image(seed, truncation_psi, tx, ty, angle) |
|
else: |
|
return self.dcgan_generate_image(seed) |
|
|