Spaces:
Build error
Build error
initial import
Browse files- Dockerfile +22 -0
- app.py +229 -0
- requirements.txt +1 -0
- simulation.py +203 -0
- www/coords.png +0 -0
Dockerfile
CHANGED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM ubuntu:kinetic
|
2 |
+
|
3 |
+
# Doesn't usually have an "upgrade"
|
4 |
+
RUN apt-get update \
|
5 |
+
&& DEBIAN_FRONTEND=noninteractive \
|
6 |
+
apt-get install --no-install-recommends --assume-yes \
|
7 |
+
build-essential \
|
8 |
+
python3 \
|
9 |
+
python3-dev \
|
10 |
+
python3-pip
|
11 |
+
|
12 |
+
COPY requirements.txt .
|
13 |
+
|
14 |
+
RUN pip install -r requirements.txt
|
15 |
+
|
16 |
+
COPY . .
|
17 |
+
|
18 |
+
ENTRYPOINT ["/bin/sh", "-c"]
|
19 |
+
|
20 |
+
EXPOSE 7860
|
21 |
+
|
22 |
+
CMD ["shiny run --port 7860 --host 0.0.0.0 app.py"]
|
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from simulation import Body, Simulation, nbody_solve, spherical_to_cartesian
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import astropy.units as u
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from shiny import App, reactive, render, ui
|
8 |
+
|
9 |
+
# This application adapted from RK4 Orbit Integrator tutorial in Python for Astronomers
|
10 |
+
# https://prappleizer.github.io/
|
11 |
+
|
12 |
+
|
13 |
+
def panel_box(*args, **kwargs):
|
14 |
+
return ui.div(
|
15 |
+
ui.div(*args, class_="card-body"),
|
16 |
+
**kwargs,
|
17 |
+
class_="card mb-3",
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
app_ui = ui.page_fluid(
|
22 |
+
{"class": "p-4"},
|
23 |
+
ui.row(
|
24 |
+
ui.column(
|
25 |
+
4,
|
26 |
+
panel_box(
|
27 |
+
ui.input_slider("days", "Simulation duration (days)", 0, 200, value=60),
|
28 |
+
ui.input_slider(
|
29 |
+
"step_size",
|
30 |
+
"Simulation time step (hours)",
|
31 |
+
0,
|
32 |
+
24,
|
33 |
+
value=4,
|
34 |
+
step=0.5,
|
35 |
+
),
|
36 |
+
ui.input_action_button(
|
37 |
+
"run", "Run simulation", class_="btn-primary w-100"
|
38 |
+
),
|
39 |
+
),
|
40 |
+
ui.navset_tab_card(
|
41 |
+
ui.nav(
|
42 |
+
"Earth",
|
43 |
+
ui.input_checkbox("earth", "Enable", True),
|
44 |
+
ui.panel_conditional(
|
45 |
+
"input.earth",
|
46 |
+
ui.input_numeric(
|
47 |
+
"earth_mass",
|
48 |
+
"Mass (10^22 kg)",
|
49 |
+
597.216,
|
50 |
+
),
|
51 |
+
ui.input_slider(
|
52 |
+
"earth_speed",
|
53 |
+
"Speed (km/s)",
|
54 |
+
0,
|
55 |
+
1,
|
56 |
+
value=0.0126,
|
57 |
+
step=0.001,
|
58 |
+
),
|
59 |
+
ui.input_slider("earth_theta", "Angle (5)", 0, 360, value=270),
|
60 |
+
ui.input_slider("earth_phi", "5", 0, 180, value=90),
|
61 |
+
),
|
62 |
+
),
|
63 |
+
ui.nav(
|
64 |
+
"Moon",
|
65 |
+
ui.input_checkbox("moon", "Enable", True),
|
66 |
+
ui.panel_conditional(
|
67 |
+
"input.moon",
|
68 |
+
ui.input_numeric("moon_mass", "Mass (10^22 kg)", 7.347),
|
69 |
+
ui.input_slider(
|
70 |
+
"moon_speed", "Speed (km/s)", 0, 2, value=1.022, step=0.001
|
71 |
+
),
|
72 |
+
ui.input_slider("moon_theta", "Angle (5)", 0, 360, value=90),
|
73 |
+
ui.input_slider("moon_phi", "5", 0, 180, value=90),
|
74 |
+
),
|
75 |
+
),
|
76 |
+
ui.nav(
|
77 |
+
"Planet X",
|
78 |
+
ui.input_checkbox("planetx", "Enable", False),
|
79 |
+
ui.output_ui("planetx_controls"),
|
80 |
+
ui.panel_conditional(
|
81 |
+
"input.planetx",
|
82 |
+
ui.input_numeric("planetx_mass", "Mass (10^22 kg)", 7.347),
|
83 |
+
ui.input_slider(
|
84 |
+
"planetx_speed",
|
85 |
+
"Speed (km/s)",
|
86 |
+
0,
|
87 |
+
2,
|
88 |
+
value=1.022,
|
89 |
+
step=0.001,
|
90 |
+
),
|
91 |
+
ui.input_slider("planetx_theta", "Angle (5)", 0, 360, 270),
|
92 |
+
ui.input_slider("planetx_phi", "5", 0, 180, 90),
|
93 |
+
),
|
94 |
+
),
|
95 |
+
),
|
96 |
+
),
|
97 |
+
ui.column(
|
98 |
+
8,
|
99 |
+
ui.output_plot("orbits", width="500px", height="500px"),
|
100 |
+
ui.img(src="coords.png", style="width: 100%; max-width: 250px;"),
|
101 |
+
),
|
102 |
+
),
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
def server(input, output, session):
|
107 |
+
def earth_body():
|
108 |
+
v = spherical_to_cartesian(
|
109 |
+
input.earth_theta(), input.earth_phi(), input.earth_speed()
|
110 |
+
)
|
111 |
+
|
112 |
+
return Body(
|
113 |
+
mass=input.earth_mass() * 10e21 * u.kg,
|
114 |
+
x_vec=np.array([0, 0, 0]) * u.km,
|
115 |
+
v_vec=np.array(v) * u.km / u.s,
|
116 |
+
name="Earth",
|
117 |
+
)
|
118 |
+
|
119 |
+
def moon_body():
|
120 |
+
v = spherical_to_cartesian(
|
121 |
+
input.moon_theta(), input.moon_phi(), input.moon_speed()
|
122 |
+
)
|
123 |
+
|
124 |
+
return Body(
|
125 |
+
mass=input.moon_mass() * 10e21 * u.kg,
|
126 |
+
x_vec=np.array([3.84e5, 0, 0]) * u.km,
|
127 |
+
v_vec=np.array(v) * u.km / u.s,
|
128 |
+
name="Moon",
|
129 |
+
)
|
130 |
+
|
131 |
+
def planetx_body():
|
132 |
+
v = spherical_to_cartesian(
|
133 |
+
input.planetx_theta(), input.planetx_phi(), input.planetx_speed()
|
134 |
+
)
|
135 |
+
|
136 |
+
return Body(
|
137 |
+
mass=input.planetx_mass() * 10e21 * u.kg,
|
138 |
+
x_vec=np.array([-3.84e5, 0, 0]) * u.km,
|
139 |
+
v_vec=np.array(v) * u.km / u.s,
|
140 |
+
name="Planet X",
|
141 |
+
)
|
142 |
+
|
143 |
+
def simulation():
|
144 |
+
bodies = []
|
145 |
+
if input.earth():
|
146 |
+
bodies.append(earth_body())
|
147 |
+
if input.moon():
|
148 |
+
bodies.append(moon_body())
|
149 |
+
if input.planetx():
|
150 |
+
bodies.append(planetx_body())
|
151 |
+
|
152 |
+
simulation_ = Simulation(bodies)
|
153 |
+
simulation_.set_diff_eq(nbody_solve)
|
154 |
+
|
155 |
+
return simulation_
|
156 |
+
|
157 |
+
has_run = False
|
158 |
+
|
159 |
+
@output
|
160 |
+
@render.plot
|
161 |
+
@reactive.event(input.run, ignore_none=False)
|
162 |
+
def orbits():
|
163 |
+
return make_orbit_plot()
|
164 |
+
|
165 |
+
def make_orbit_plot():
|
166 |
+
sim = simulation()
|
167 |
+
n_steps = input.days() * 24 / input.step_size()
|
168 |
+
with ui.Progress(min=1, max=n_steps) as p:
|
169 |
+
sim.run(input.days() * u.day, input.step_size() * u.hr, progress=p)
|
170 |
+
|
171 |
+
sim_hist = sim.history
|
172 |
+
end_idx = len(sim_hist) - 1
|
173 |
+
|
174 |
+
fig = plt.figure()
|
175 |
+
|
176 |
+
ax = plt.axes(projection="3d")
|
177 |
+
|
178 |
+
n_bodies = int(sim_hist.shape[1] / 6)
|
179 |
+
for i in range(0, n_bodies):
|
180 |
+
ax.scatter3D(
|
181 |
+
sim_hist[end_idx, i * 6],
|
182 |
+
sim_hist[end_idx, i * 6 + 1],
|
183 |
+
sim_hist[end_idx, i * 6 + 2],
|
184 |
+
s=50,
|
185 |
+
)
|
186 |
+
ax.plot3D(
|
187 |
+
sim_hist[:, i * 6],
|
188 |
+
sim_hist[:, i * 6 + 1],
|
189 |
+
sim_hist[:, i * 6 + 2],
|
190 |
+
)
|
191 |
+
|
192 |
+
ax.view_init(30, 20)
|
193 |
+
set_axes_equal(ax)
|
194 |
+
|
195 |
+
return fig
|
196 |
+
|
197 |
+
|
198 |
+
www_dir = Path(__file__).parent / "www"
|
199 |
+
app = App(app_ui, server, static_assets=www_dir)
|
200 |
+
|
201 |
+
|
202 |
+
# https://stackoverflow.com/a/31364297/412655
|
203 |
+
def set_axes_equal(ax):
|
204 |
+
"""Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
205 |
+
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
206 |
+
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
207 |
+
|
208 |
+
Input
|
209 |
+
ax: a matplotlib axis, e.g., as output from plt.gca().
|
210 |
+
"""
|
211 |
+
|
212 |
+
x_limits = ax.get_xlim3d()
|
213 |
+
y_limits = ax.get_ylim3d()
|
214 |
+
z_limits = ax.get_zlim3d()
|
215 |
+
|
216 |
+
x_range = abs(x_limits[1] - x_limits[0])
|
217 |
+
x_middle = np.mean(x_limits)
|
218 |
+
y_range = abs(y_limits[1] - y_limits[0])
|
219 |
+
y_middle = np.mean(y_limits)
|
220 |
+
z_range = abs(z_limits[1] - z_limits[0])
|
221 |
+
z_middle = np.mean(z_limits)
|
222 |
+
|
223 |
+
# The plot bounding box is a sphere in the sense of the infinity
|
224 |
+
# norm, hence I call half the max range the plot radius.
|
225 |
+
plot_radius = 0.5 * max([x_range, y_range, z_range])
|
226 |
+
|
227 |
+
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
228 |
+
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
229 |
+
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
astropy==5.1
|
simulation.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import numpy as np
|
3 |
+
import astropy.constants as c
|
4 |
+
import time
|
5 |
+
|
6 |
+
# Adapted from Python for Astronomers: An Introduction to Scientific Computing
|
7 |
+
# by Imad Pasha & Christopher Agostino
|
8 |
+
# https://prappleizer.github.io/Tutorials/RK4/RK4_Tutorial.html
|
9 |
+
|
10 |
+
# Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
|
11 |
+
# http://creativecommons.org/licenses/by-nc-sa/4.0/
|
12 |
+
|
13 |
+
|
14 |
+
class Body:
|
15 |
+
def __init__(self, mass, x_vec, v_vec, name=None, has_units=True):
|
16 |
+
"""
|
17 |
+
spawn instance of the Body class, which is used in Simulations.
|
18 |
+
|
19 |
+
:param: mass | mass of particle. if has_units=True, an Astropy Quantity, otherwise a float
|
20 |
+
:param: x_vec | a vector len(3) containing the x, y, z initial positions of the body.
|
21 |
+
the array can be unitless if has_units=False, or be of the form np.array([0,0,0])*u.km
|
22 |
+
:param: v_vec | vector len(3) containing the v_x, v_y, v_z initial velocities of the body.
|
23 |
+
:param: name | string containing a name, used for plotting later
|
24 |
+
:param: has_units | defines how the code treats the problem, as unit-ed, or unitless.
|
25 |
+
"""
|
26 |
+
self.name = name
|
27 |
+
self.has_units = has_units
|
28 |
+
if self.has_units:
|
29 |
+
self.mass = mass.cgs
|
30 |
+
self.x_vec = x_vec.cgs.value
|
31 |
+
self.v_vec = v_vec.cgs.value
|
32 |
+
else:
|
33 |
+
self.mass = mass
|
34 |
+
self.x_vec = x_vec
|
35 |
+
self.v_vec = v_vec
|
36 |
+
|
37 |
+
def return_vec(self):
|
38 |
+
"""
|
39 |
+
Concatenates the x and v vector into 1 vector 'y' used in RK formalism.
|
40 |
+
"""
|
41 |
+
return np.concatenate((self.x_vec, self.v_vec))
|
42 |
+
|
43 |
+
def return_mass(self):
|
44 |
+
"""
|
45 |
+
handler to strip the mass units if present (after converting to cgs) or return float
|
46 |
+
"""
|
47 |
+
if self.has_units:
|
48 |
+
return self.mass.cgs.value
|
49 |
+
else:
|
50 |
+
return self.mass
|
51 |
+
|
52 |
+
def return_name(self):
|
53 |
+
return self.name
|
54 |
+
|
55 |
+
|
56 |
+
class Simulation:
|
57 |
+
def __init__(self, bodies, has_units=True):
|
58 |
+
"""
|
59 |
+
Initializes instance of Simulation object.
|
60 |
+
-------------------------------------------
|
61 |
+
Params:
|
62 |
+
bodies (list): a list of Body() objects
|
63 |
+
has_units (bool): set whether bodies entered have units or not.
|
64 |
+
"""
|
65 |
+
self.has_units = has_units
|
66 |
+
self.bodies = bodies
|
67 |
+
self.N_bodies = len(self.bodies)
|
68 |
+
self.nDim = 6.0
|
69 |
+
self.quant_vec = np.concatenate(np.array([i.return_vec() for i in self.bodies]))
|
70 |
+
self.mass_vec = np.array([i.return_mass() for i in self.bodies])
|
71 |
+
self.name_vec = [i.return_name() for i in self.bodies]
|
72 |
+
|
73 |
+
def set_diff_eq(self, calc_diff_eqs, **kwargs):
|
74 |
+
"""
|
75 |
+
Method which assigns an external solver function as the diff-eq solver for RK4.
|
76 |
+
For N-body or gravitational setups, this is the function which calculates accelerations.
|
77 |
+
---------------------------------
|
78 |
+
Params:
|
79 |
+
calc_diff_eqs: A function which returns a [y] vector for RK4
|
80 |
+
**kwargs: Any additional inputs/hyperparameters the external function requires
|
81 |
+
"""
|
82 |
+
self.diff_eq_kwargs = kwargs
|
83 |
+
self.calc_diff_eqs = calc_diff_eqs
|
84 |
+
|
85 |
+
def rk4(self, t, dt):
|
86 |
+
"""
|
87 |
+
RK4 integrator. Calculates the K values and returns a new y vector
|
88 |
+
--------------------------------
|
89 |
+
Params:
|
90 |
+
t: a time. Only used if the diff eq depends on time (gravity doesn't).
|
91 |
+
dt: timestep. Non adaptive in this case
|
92 |
+
"""
|
93 |
+
k1 = dt * self.calc_diff_eqs(
|
94 |
+
t, self.quant_vec, self.mass_vec, **self.diff_eq_kwargs
|
95 |
+
)
|
96 |
+
k2 = dt * self.calc_diff_eqs(
|
97 |
+
t + 0.5 * dt,
|
98 |
+
self.quant_vec + 0.5 * k1,
|
99 |
+
self.mass_vec,
|
100 |
+
**self.diff_eq_kwargs,
|
101 |
+
)
|
102 |
+
k3 = dt * self.calc_diff_eqs(
|
103 |
+
t + 0.5 * dt,
|
104 |
+
self.quant_vec + 0.5 * k2,
|
105 |
+
self.mass_vec,
|
106 |
+
**self.diff_eq_kwargs,
|
107 |
+
)
|
108 |
+
k4 = dt * self.calc_diff_eqs(
|
109 |
+
t + dt, self.quant_vec + k2, self.mass_vec, **self.diff_eq_kwargs
|
110 |
+
)
|
111 |
+
|
112 |
+
y_new = self.quant_vec + ((k1 + 2 * k2 + 2 * k3 + k4) / 6.0)
|
113 |
+
|
114 |
+
return y_new
|
115 |
+
|
116 |
+
def run(self, T, dt, t0=0, progress=None):
|
117 |
+
"""
|
118 |
+
Method which runs the simulation on a given set of bodies.
|
119 |
+
---------------------
|
120 |
+
Params:
|
121 |
+
T: total time (in simulation units) to run the simulation. Can have units or not, just set has_units appropriately.
|
122 |
+
dt: timestep (in simulation units) to advance the simulation. Same as above
|
123 |
+
t0 (optional): set a non-zero start time to the simulation.
|
124 |
+
progress (optional): A shiny.ui.Progress object which will be used to send progress updates.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
None, but leaves an attribute history accessed via
|
128 |
+
'simulation.history' which contains all y vectors for the simulation.
|
129 |
+
These are of shape (Nstep,Nbodies * 6), so the x and y positions of particle 1 are
|
130 |
+
simulation.history[:,0], simulation.history[:,1], while the same for particle 2 are
|
131 |
+
simulation.history[:,6], simulation.history[:,7]. Velocities are also extractable.
|
132 |
+
"""
|
133 |
+
if not hasattr(self, "calc_diff_eqs"):
|
134 |
+
raise AttributeError("You must set a diff eq solver first.")
|
135 |
+
if self.has_units:
|
136 |
+
try:
|
137 |
+
_ = t0.unit
|
138 |
+
except:
|
139 |
+
t0 = (t0 * T.unit).cgs.value
|
140 |
+
T = T.cgs.value
|
141 |
+
dt = dt.cgs.value
|
142 |
+
|
143 |
+
self.history: Any = [self.quant_vec]
|
144 |
+
clock_time = t0
|
145 |
+
nsteps = int((T - t0) / dt)
|
146 |
+
start_time = time.time()
|
147 |
+
for step in range(nsteps):
|
148 |
+
if progress is not None and step % 5 == 0:
|
149 |
+
progress.set(
|
150 |
+
step,
|
151 |
+
message=f"Integrating step = {step} / {nsteps}",
|
152 |
+
detail=f"Elapsed time = {round(clock_time/1e6, 1)}",
|
153 |
+
)
|
154 |
+
y_new = self.rk4(0, dt)
|
155 |
+
self.history.append(y_new)
|
156 |
+
self.quant_vec = y_new
|
157 |
+
clock_time += dt
|
158 |
+
runtime = time.time() - start_time
|
159 |
+
self.history = np.array(self.history)
|
160 |
+
|
161 |
+
|
162 |
+
def nbody_solve(t, y, masses):
|
163 |
+
N_bodies = int(len(y) / 6)
|
164 |
+
solved_vector = np.zeros(y.size)
|
165 |
+
for i in range(N_bodies):
|
166 |
+
ioffset = i * 6
|
167 |
+
for j in range(N_bodies):
|
168 |
+
joffset = j * 6
|
169 |
+
solved_vector[ioffset] = y[ioffset + 3]
|
170 |
+
solved_vector[ioffset + 1] = y[ioffset + 4]
|
171 |
+
solved_vector[ioffset + 2] = y[ioffset + 5]
|
172 |
+
if i != j:
|
173 |
+
dx = y[ioffset] - y[joffset]
|
174 |
+
dy = y[ioffset + 1] - y[joffset + 1]
|
175 |
+
dz = y[ioffset + 2] - y[joffset + 2]
|
176 |
+
r = (dx**2 + dy**2 + dz**2) ** 0.5
|
177 |
+
ax = (-c.G.cgs * masses[j] / r**3) * dx
|
178 |
+
ay = (-c.G.cgs * masses[j] / r**3) * dy
|
179 |
+
az = (-c.G.cgs * masses[j] / r**3) * dz
|
180 |
+
ax = ax.value
|
181 |
+
ay = ay.value
|
182 |
+
az = az.value
|
183 |
+
solved_vector[ioffset + 3] += ax
|
184 |
+
solved_vector[ioffset + 4] += ay
|
185 |
+
solved_vector[ioffset + 5] += az
|
186 |
+
return solved_vector
|
187 |
+
|
188 |
+
|
189 |
+
def spherical_to_cartesian(
|
190 |
+
theta: float, phi: float, rho: float
|
191 |
+
) -> tuple[float, float, float]:
|
192 |
+
x = rho * sind(phi) * cosd(theta)
|
193 |
+
y = rho * sind(phi) * sind(theta)
|
194 |
+
z = rho * cosd(phi)
|
195 |
+
return (x, y, z)
|
196 |
+
|
197 |
+
|
198 |
+
def cosd(x):
|
199 |
+
return np.cos(x / 180 * np.pi)
|
200 |
+
|
201 |
+
|
202 |
+
def sind(x):
|
203 |
+
return np.sin(x / 180 * np.pi)
|
www/coords.png
ADDED