Spaces:
Sleeping
Sleeping
import streamlit as st | |
import PIL.Image as Image | |
import numpy as np | |
import pandas as pd | |
import requests | |
from io import BytesIO | |
from fastai.vision.all import * | |
#from fastai.vision.all import load_learner | |
# Initialize Streamlit app | |
st.title("White Blood Cell Classifier") | |
# Load the FastAI model for WBC identification | |
fastai_model = load_learner('model1.pkl') | |
# File uploader for image input | |
uploaded_file = st.file_uploader("Upload an image for detection", type=["jpg", "png"]) | |
if uploaded_file: | |
# Open the uploaded image | |
image = Image.open(uploaded_file) | |
# Perform inference | |
results = model.predict(np.array(image)) | |
# Display results | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Render detection results | |
rendered_image = render_result(model=model, image=image, result=results[0]) | |
# Show the rendered result | |
st.image(rendered_image, caption="Detection Results", use_column_width=True) | |
# Display the counts of each cell type | |
st.write("Cell Type :") | |
# Perform inference with the FastAI model | |
pred, idx, probs = fastai_model.predict(image) | |
st.write("White Blood Cell Classification:") | |
categories = ('EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL') | |
results_dict = dict(zip(categories, map(float, probs))) | |
st.write(results_dict) | |
else: | |
st.write("Upload an image to start detection.") | |