import streamlit as st import PIL.Image as Image import numpy as np import pandas as pd import requests from io import BytesIO from fastai.vision.all import * #from fastai.vision.all import load_learner # Initialize Streamlit app st.title("White Blood Cell Classifier") # Load the FastAI model for WBC identification fastai_model = load_learner('model1.pkl') # File uploader for image input uploaded_file = st.file_uploader("Upload an image for detection", type=["jpg", "png"]) if uploaded_file: # Open the uploaded image image = Image.open(uploaded_file) # Perform inference results = model.predict(np.array(image)) # Display results st.image(image, caption="Uploaded Image", use_column_width=True) # Render detection results rendered_image = render_result(model=model, image=image, result=results[0]) # Show the rendered result st.image(rendered_image, caption="Detection Results", use_column_width=True) # Display the counts of each cell type st.write("Cell Type :") # Perform inference with the FastAI model pred, idx, probs = fastai_model.predict(image) st.write("White Blood Cell Classification:") categories = ('EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL') results_dict = dict(zip(categories, map(float, probs))) st.write(results_dict) else: st.write("Upload an image to start detection.")