|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel |
|
import torch |
|
from transformers import BitsAndBytesConfig |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"unsloth/Llama-3.2-3B-Instruct-bnb-4bit", |
|
device_map="auto", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"unsloth/Llama-3.2-3B-Instruct-bnb-4bit", |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
quantization_config=bnb_config |
|
) |
|
model = PeftModel.from_pretrained(base_model, "emeses/lab2_model") |
|
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens=512, |
|
temperature=0.7, |
|
top_p=0.9, |
|
): |
|
try: |
|
|
|
prompt = f"{system_message}\n\nUser: {message}\nAssistant:" |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) |
|
|
|
|
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
response = response.split("Assistant:")[-1].strip() |
|
|
|
return response |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
|
|
iface = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
label="System Message", |
|
value="You are a helpful AI assistant.", |
|
lines=2 |
|
), |
|
gr.Slider(minimum=1, maximum=1024, value=512, label="Max Tokens"), |
|
gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature", step=0.1), |
|
gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P", step=0.1), |
|
], |
|
title="Chat with Fine-tuned LLaMA Model", |
|
description="A conversational AI powered by fine-tuned LLaMA 3.2B model", |
|
retry_btn="Regenerate", |
|
undo_btn="Delete Last", |
|
clear_btn="Clear Chat" |
|
) |
|
|
|
|
|
iface.queue().launch( |
|
share=True, |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True |
|
) |