lab2 / app.py
emeses's picture
Update space
7df62a0
raw
history blame
1.88 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def upload_schedule(files):
# Process the uploaded files here
return f"Uploaded {len(files)} file(s)"
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.File(label="Upload Schedule", file_count="multiple", type="file", fn=upload_schedule)
with gr.Column(scale=3):
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()