emeses commited on
Commit
1d029eb
·
1 Parent(s): aaaf098

Update space

Browse files
Files changed (1) hide show
  1. app.py +61 -14
app.py CHANGED
@@ -1,17 +1,64 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
 
2
 
3
- model_name = "emeses/lab2_model"
4
- # Load the model with 8-bit quantization (works better on CPU)
5
- model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config={"load_in_8bit": True})
6
- tokenizer = AutoTokenizer.from_pretrained(model_name)
7
- model = model.to("cpu")
8
 
9
- # Function for Gradio interface
10
- def generate_text(prompt):
11
- inputs = tokenizer(prompt, return_tensors="pt")
12
- outputs = model.generate(inputs["input_ids"], max_length=50)
13
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
14
 
15
- # Gradio interface
16
- import gradio as gr
17
- gr.Interface(fn=generate_text, inputs="text", outputs="text").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
 
8
 
 
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
+
62
+
63
+ if __name__ == "__main__":
64
+ demo.launch()