AI-Interface / app.py
emielclopterop's picture
Update app.py
8623a55 verified
raw
history blame
9.2 kB
import gradio as gr
from transformers import pipeline
# Define the necessary pipelines
def load_qa_model():
return pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
def load_classifier_model():
return pipeline("Sentiment Analysis", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
def load_translator_model(target_language):
try:
model_name = f"Helsinki-NLP/opus-mt-en-{target_language}"
return pipeline("translation", model=model_name)
except Exception as e:
print(f"Error loading translation model: {e}")
return None
def load_generator_model():
try:
return pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B", tokenizer="EleutherAI/gpt-neo-2.7B")
except Exception as e:
print(f"Error loading text generation model: {e}")
return None
def load_summarizer_model():
try:
return pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading summarization model: {e}")
return None
# Define the functions for processing
def process_qa(context, question):
qa_model = load_qa_model()
try:
return qa_model(context=context, question=question)["answer"]
except Exception as e:
print(f"Error during question answering: {e}")
return "Error during question answering"
def process_classifier(text, labels):
classifier_model = load_classifier_model()
try:
return classifier_model(text, labels)["labels"][0]
except Exception as e:
print(f"Error during classification: {e}")
return "Error during classification"
def process_translation(text, target_language):
translator_model = load_translator_model(target_language)
if translator_model:
try:
return translator_model(text)[0]["translation_text"]
except Exception as e:
print(f"Error during translation: {e}")
return "Translation error"
return "Model loading error"
def process_generation(prompt):
generator_model = load_generator_model()
if generator_model:
if prompt.strip():
try:
return generator_model(prompt, max_length=50)[0]["generated_text"]
except Exception as e:
print(f"Error during text generation: {e}")
return "Text generation error"
else:
return "Prompt is empty"
return "Model loading error"
def process_summarization(text):
summarizer_model = load_summarizer_model()
if summarizer_model:
if text.strip():
try:
return summarizer_model(text, max_length=150, min_length=40, do_sample=False)[0]["summary_text"]
except Exception as e:
print(f"Error during summarization: {e}")
return "Summarization error"
else:
return "Text is empty"
return "Model loading error"
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("Choose an NLP task and input the required text.")
with gr.Tab("Single-Models"):
gr.Markdown("This tab is for single models demonstration.")
task_select_single = gr.Dropdown(["Question Answering", "Sentiment Analysis", "Translation", "Text Generation", "Summarization"], label="Select Task")
input_text_single = gr.Textbox(label="Input Text")
# Additional inputs for specific tasks
context_input_single = gr.Textbox(label="Context", visible=False)
label_input_single = gr.CheckboxGroup(["positive", "negative", "neutral"], label="Labels", visible=False)
target_language_input_single = gr.Dropdown(["nl", "fr", "es", "de"], label="Target Language", visible=False)
output_text_single = gr.Textbox(label="Output")
execute_button_single = gr.Button("Execute")
def update_inputs(task):
if task == "Question Answering":
return {
context_input_single: gr.update(visible=True),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
elif task == "Sentiment Analysis":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=True),
target_language_input_single: gr.update(visible=False)
}
elif task == "Translation":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=True)
}
elif task == "Text Generation":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
elif task == "Summarization":
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
else:
return {
context_input_single: gr.update(visible=False),
label_input_single: gr.update(visible=False),
target_language_input_single: gr.update(visible=False)
}
task_select_single.change(fn=update_inputs, inputs=task_select_single,
outputs=[context_input_single, label_input_single, target_language_input_single])
def execute_task_single(task, input_text, context, labels, target_language):
if task == "Question Answering":
return process_qa(context=context, question=input_text)
elif task == "Sentiment Analysis":
if not labels:
return "Please provide labels for classification."
return process_classifier(text=input_text, labels=labels)
elif task == "Translation":
if not target_language:
return "Please select a target language for translation."
return process_translation(text=input_text, target_language=target_language)
elif task == "Text Generation":
return process_generation(prompt=input_text)
elif task == "Summarization":
return process_summarization(text=input_text)
else:
return "Invalid task selected."
execute_button_single.click(
execute_task_single,
inputs=[task_select_single, input_text_single, context_input_single, label_input_single, target_language_input_single],
outputs=output_text_single
)
with gr.Tab("Multi-Model Task"):
gr.Markdown("This tab allows you to execute all tasks sequentially.")
# Inputs for all tasks
input_text_multi = gr.Textbox(label="Input Text")
context_input_multi = gr.Textbox(label="Context (for QA)")
label_input_multi = gr.CheckboxGroup(["positive", "negative", "neutral"], label="Labels (for Classification)")
target_language_input_multi = gr.Dropdown(["nl", "fr", "es", "de"], label="Target Language (for Translation)")
# Outputs for all tasks
output_qa = gr.Textbox(label="QA Output")
output_classification = gr.Textbox(label="Classification Output")
output_translation = gr.Textbox(label="Translation Output")
output_generation = gr.Textbox(label="Text Generation Output")
output_summarization = gr.Textbox(label="Summarization Output")
execute_button_multi = gr.Button("Execute All Tasks")
def execute_all_tasks(input_text, context, labels, target_language):
# Process Question Answering
qa_output = process_qa(context=context, question=input_text)
# Process Classification
classification_output = process_classifier(text=input_text, labels=labels)
# Process Translation
translation_output = process_translation(text=input_text, target_language=target_language)
# Process Text Generation using QA output
generation_output = process_generation(prompt=qa_output)
# Process Summarization using Text Generation output
summarization_output = process_summarization(text=generation_output)
# Return all outputs
return qa_output, classification_output, translation_output, generation_output, summarization_output
execute_button_multi.click(
execute_all_tasks,
inputs=[input_text_multi, context_input_multi, label_input_multi, target_language_input_multi],
outputs=[output_qa, output_classification, output_translation, output_generation, output_summarization]
)
demo.launch()