Spaces:
Sleeping
Sleeping
emielclopterop
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,213 @@
|
|
1 |
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
|
6 |
-
#pipelines
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with gr.Blocks() as demo:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# Define the necessary pipelines
|
6 |
+
def load_qa_model():
|
7 |
+
return pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
|
8 |
+
|
9 |
+
def load_classifier_model():
|
10 |
+
return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
|
11 |
+
|
12 |
+
def load_translator_model(target_language):
|
13 |
+
try:
|
14 |
+
model_name = f"Helsinki-NLP/opus-mt-en-{target_language}"
|
15 |
+
return pipeline("translation", model=model_name)
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Error loading translation model: {e}")
|
18 |
+
return None
|
19 |
+
|
20 |
+
def load_generator_model():
|
21 |
+
try:
|
22 |
+
return pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B", tokenizer="EleutherAI/gpt-neo-2.7B")
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error loading text generation model: {e}")
|
25 |
+
return None
|
26 |
+
|
27 |
+
def load_summarizer_model():
|
28 |
+
try:
|
29 |
+
return pipeline("summarization", model="facebook/bart-large-cnn")
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error loading summarization model: {e}")
|
32 |
+
return None
|
33 |
+
|
34 |
+
# Define the functions for processing
|
35 |
+
def process_qa(context, question):
|
36 |
+
qa_model = load_qa_model()
|
37 |
+
try:
|
38 |
+
return qa_model(context=context, question=question)["answer"]
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error during question answering: {e}")
|
41 |
+
return "Error during question answering"
|
42 |
+
|
43 |
+
def process_classifier(text, labels):
|
44 |
+
classifier_model = load_classifier_model()
|
45 |
+
try:
|
46 |
+
return classifier_model(text, labels)["labels"][0]
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error during classification: {e}")
|
49 |
+
return "Error during classification"
|
50 |
+
|
51 |
+
def process_translation(text, target_language):
|
52 |
+
translator_model = load_translator_model(target_language)
|
53 |
+
if translator_model:
|
54 |
+
try:
|
55 |
+
return translator_model(text)[0]["translation_text"]
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error during translation: {e}")
|
58 |
+
return "Translation error"
|
59 |
+
return "Model loading error"
|
60 |
+
|
61 |
+
def process_generation(prompt):
|
62 |
+
generator_model = load_generator_model()
|
63 |
+
if generator_model:
|
64 |
+
if prompt.strip():
|
65 |
+
try:
|
66 |
+
return generator_model(prompt, max_length=50)[0]["generated_text"]
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error during text generation: {e}")
|
69 |
+
return "Text generation error"
|
70 |
+
else:
|
71 |
+
return "Prompt is empty"
|
72 |
+
return "Model loading error"
|
73 |
+
|
74 |
+
def process_summarization(text):
|
75 |
+
summarizer_model = load_summarizer_model()
|
76 |
+
if summarizer_model:
|
77 |
+
if text.strip():
|
78 |
+
try:
|
79 |
+
return summarizer_model(text, max_length=150, min_length=40, do_sample=False)[0]["summary_text"]
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error during summarization: {e}")
|
82 |
+
return "Summarization error"
|
83 |
+
else:
|
84 |
+
return "Text is empty"
|
85 |
+
return "Model loading error"
|
86 |
+
|
87 |
+
# Gradio Interface
|
88 |
with gr.Blocks() as demo:
|
89 |
+
gr.Markdown("Choose an NLP task and input the required text.")
|
90 |
+
|
91 |
+
with gr.Tab("Single-Models"):
|
92 |
+
gr.Markdown("This tab is for single models demonstration.")
|
93 |
+
|
94 |
+
task_select_single = gr.Dropdown(["Question Answering", "Zero-Shot Classification", "Translation", "Text Generation", "Summarization"], label="Select Task")
|
95 |
+
input_text_single = gr.Textbox(label="Input Text")
|
96 |
+
|
97 |
+
# Additional inputs for specific tasks
|
98 |
+
context_input_single = gr.Textbox(label="Context", visible=False)
|
99 |
+
label_input_single = gr.CheckboxGroup(["positive", "negative", "neutral"], label="Labels", visible=False)
|
100 |
+
target_language_input_single = gr.Dropdown(["nl", "fr", "es", "de"], label="Target Language", visible=False)
|
101 |
+
|
102 |
+
output_text_single = gr.Textbox(label="Output")
|
103 |
+
execute_button_single = gr.Button("Execute")
|
104 |
+
|
105 |
+
def update_inputs(task):
|
106 |
+
if task == "Question Answering":
|
107 |
+
return {
|
108 |
+
context_input_single: gr.update(visible=True),
|
109 |
+
label_input_single: gr.update(visible=False),
|
110 |
+
target_language_input_single: gr.update(visible=False)
|
111 |
+
}
|
112 |
+
elif task == "Zero-Shot Classification":
|
113 |
+
return {
|
114 |
+
context_input_single: gr.update(visible=False),
|
115 |
+
label_input_single: gr.update(visible=True),
|
116 |
+
target_language_input_single: gr.update(visible=False)
|
117 |
+
}
|
118 |
+
elif task == "Translation":
|
119 |
+
return {
|
120 |
+
context_input_single: gr.update(visible=False),
|
121 |
+
label_input_single: gr.update(visible=False),
|
122 |
+
target_language_input_single: gr.update(visible=True)
|
123 |
+
}
|
124 |
+
elif task == "Text Generation":
|
125 |
+
return {
|
126 |
+
context_input_single: gr.update(visible=False),
|
127 |
+
label_input_single: gr.update(visible=False),
|
128 |
+
target_language_input_single: gr.update(visible=False)
|
129 |
+
}
|
130 |
+
elif task == "Summarization":
|
131 |
+
return {
|
132 |
+
context_input_single: gr.update(visible=False),
|
133 |
+
label_input_single: gr.update(visible=False),
|
134 |
+
target_language_input_single: gr.update(visible=False)
|
135 |
+
}
|
136 |
+
else:
|
137 |
+
return {
|
138 |
+
context_input_single: gr.update(visible=False),
|
139 |
+
label_input_single: gr.update(visible=False),
|
140 |
+
target_language_input_single: gr.update(visible=False)
|
141 |
+
}
|
142 |
+
|
143 |
+
task_select_single.change(fn=update_inputs, inputs=task_select_single,
|
144 |
+
outputs=[context_input_single, label_input_single, target_language_input_single])
|
145 |
+
|
146 |
+
def execute_task_single(task, input_text, context, labels, target_language):
|
147 |
+
if task == "Question Answering":
|
148 |
+
return process_qa(context=context, question=input_text)
|
149 |
+
elif task == "Zero-Shot Classification":
|
150 |
+
if not labels:
|
151 |
+
return "Please provide labels for classification."
|
152 |
+
return process_classifier(text=input_text, labels=labels)
|
153 |
+
elif task == "Translation":
|
154 |
+
if not target_language:
|
155 |
+
return "Please select a target language for translation."
|
156 |
+
return process_translation(text=input_text, target_language=target_language)
|
157 |
+
elif task == "Text Generation":
|
158 |
+
return process_generation(prompt=input_text)
|
159 |
+
elif task == "Summarization":
|
160 |
+
return process_summarization(text=input_text)
|
161 |
+
else:
|
162 |
+
return "Invalid task selected."
|
163 |
+
|
164 |
+
execute_button_single.click(
|
165 |
+
execute_task_single,
|
166 |
+
inputs=[task_select_single, input_text_single, context_input_single, label_input_single, target_language_input_single],
|
167 |
+
outputs=output_text_single
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Tab("Multi-Model Task"):
|
171 |
+
gr.Markdown("This tab allows you to execute all tasks sequentially.")
|
172 |
+
|
173 |
+
# Inputs for all tasks
|
174 |
+
input_text_multi = gr.Textbox(label="Input Text")
|
175 |
+
context_input_multi = gr.Textbox(label="Context (for QA)")
|
176 |
+
label_input_multi = gr.CheckboxGroup(["positive", "negative", "neutral"], label="Labels (for Classification)")
|
177 |
+
target_language_input_multi = gr.Dropdown(["nl", "fr", "es", "de"], label="Target Language (for Translation)")
|
178 |
+
|
179 |
+
# Outputs for all tasks
|
180 |
+
output_qa = gr.Textbox(label="QA Output")
|
181 |
+
output_classification = gr.Textbox(label="Classification Output")
|
182 |
+
output_translation = gr.Textbox(label="Translation Output")
|
183 |
+
output_generation = gr.Textbox(label="Text Generation Output")
|
184 |
+
output_summarization = gr.Textbox(label="Summarization Output")
|
185 |
+
|
186 |
+
execute_button_multi = gr.Button("Execute All Tasks")
|
187 |
+
|
188 |
+
def execute_all_tasks(input_text, context, labels, target_language):
|
189 |
+
# Process Question Answering
|
190 |
+
qa_output = process_qa(context=context, question=input_text)
|
191 |
+
|
192 |
+
# Process Classification
|
193 |
+
classification_output = process_classifier(text=input_text, labels=labels)
|
194 |
+
|
195 |
+
# Process Translation
|
196 |
+
translation_output = process_translation(text=input_text, target_language=target_language)
|
197 |
+
|
198 |
+
# Process Text Generation using QA output
|
199 |
+
generation_output = process_generation(prompt=qa_output)
|
200 |
+
|
201 |
+
# Process Summarization using Text Generation output
|
202 |
+
summarization_output = process_summarization(text=generation_output)
|
203 |
+
|
204 |
+
# Return all outputs
|
205 |
+
return qa_output, classification_output, translation_output, generation_output, summarization_output
|
206 |
+
|
207 |
+
execute_button_multi.click(
|
208 |
+
execute_all_tasks,
|
209 |
+
inputs=[input_text_multi, context_input_multi, label_input_multi, target_language_input_multi],
|
210 |
+
outputs=[output_qa, output_classification, output_translation, output_generation, output_summarization]
|
211 |
+
)
|
212 |
+
|
213 |
+
demo.launch()
|