import gradio as gr import torch from transformers import AutoModelForTokenClassification, AutoTokenizer import pandas as pd import numpy as np # Play with me, consts CONDITIONING_VARIABLES = ["none", "birth_place", "birth_date", "name"] FEMALE_WEIGHTS = [1.5, 5] # About 5x more male than female tokens in dataset # Internal consts START_YEAR = 1800 STOP_YEAR = 1999 SPLIT_KEY = "DATE" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") MAX_TOKEN_LENGTH = 128 NON_LOSS_TOKEN_ID = -100 NON_GENDERED_TOKEN_ID = 30 # Picked an int that will pop out visually LABEL_DICT = {"female": 9, "male": -9} # Picked an int that will pop out visually CLASSES = list(LABEL_DICT.keys()) # Fire up the models models_paths = dict() models = dict() base_path = "emilylearning/" for var in CONDITIONING_VARIABLES: for f_weight in FEMALE_WEIGHTS: if f_weight == 1.5: models_paths[(var, f_weight)] = ( base_path + f"finetuned_cgp_added_{var}__female_weight_{f_weight}__test_run_False__p_dataset_100" ) else: models_paths[(var, f_weight)] = ( base_path + f"finetuned_cgp_add_{var}__f_weight_{f_weight}__p_dataset_100__test_False" ) models[(var, f_weight)] = AutoModelForTokenClassification.from_pretrained( models_paths[(var, f_weight)] ) # Tokenizers same for each model, so just grabbing one of them tokenizer = AutoTokenizer.from_pretrained( models_paths[(CONDITIONING_VARIABLES[0], FEMALE_WEIGHTS[0])], add_prefix_space=True ) MASK_TOKEN_ID = tokenizer.mask_token_id # more static stuff gendered_lists = [ ["he", "she"], ["him", "her"], ["his", "hers"], ["male", "female"], ["man", "woman"], ["men", "women"], ["husband", "wife"], ] male_gendered_dict = {list[0]: list for list in gendered_lists} female_gendered_dict = {list[1]: list for list in gendered_lists} male_gendered_token_ids = tokenizer.convert_tokens_to_ids( list(male_gendered_dict.keys()) ) female_gendered_token_ids = tokenizer.convert_tokens_to_ids( list(female_gendered_dict.keys()) ) assert tokenizer.unk_token_id not in male_gendered_token_ids assert tokenizer.unk_token_id not in female_gendered_token_ids label_list = list(LABEL_DICT.values()) assert label_list[0] == LABEL_DICT["female"], "LABEL_DICT not an ordered dict" label2id = {label: idx for idx, label in enumerate(label_list)} # Prepare text def tokenize_and_append_metadata(text, tokenizer): tokenized = tokenizer( text, truncation=True, padding=True, max_length=MAX_TOKEN_LENGTH, ) # Finding the gender pronouns in the tokens token_ids = tokenized["input_ids"] female_tags = torch.tensor( [ LABEL_DICT["female"] if id in female_gendered_token_ids else NON_GENDERED_TOKEN_ID for id in token_ids ] ) male_tags = torch.tensor( [ LABEL_DICT["male"] if id in male_gendered_token_ids else NON_GENDERED_TOKEN_ID for id in token_ids ] ) # Labeling and masking out occurrences of gendered pronouns labels = torch.tensor([NON_LOSS_TOKEN_ID] * len(token_ids)) labels = torch.where( female_tags == LABEL_DICT["female"], label2id[LABEL_DICT["female"]], NON_LOSS_TOKEN_ID, ) labels = torch.where( male_tags == LABEL_DICT["male"], label2id[LABEL_DICT["male"]], labels ) masked_token_ids = torch.where( female_tags == LABEL_DICT["female"], MASK_TOKEN_ID, torch.tensor(token_ids) ) masked_token_ids = torch.where( male_tags == LABEL_DICT["male"], MASK_TOKEN_ID, masked_token_ids ) tokenized["input_ids"] = masked_token_ids tokenized["labels"] = labels return tokenized # Run inference def predict_gender_pronouns( num_points, conditioning_variables, f_weights, input_text, return_preds=False ): text_portions = input_text.split(SPLIT_KEY) years = np.linspace(START_YEAR, STOP_YEAR, int(num_points)).astype(int) dfs = [] dfs.append(pd.DataFrame({"year": years})) for f_weight in f_weights: for var in conditioning_variables: prefix = f"w{f_weight}_{var}" model = models[(var, f_weight)] p_female = [] p_male = [] for b_date in years: target_text = f"{b_date}".join(text_portions) tokenized_sample = tokenize_and_append_metadata( target_text, tokenizer=tokenizer, ) ids = tokenized_sample["input_ids"] atten_mask = torch.tensor(tokenized_sample["attention_mask"]) toks = tokenizer.convert_ids_to_tokens(ids) labels = tokenized_sample["labels"] with torch.no_grad(): outputs = model(ids.unsqueeze(dim=0), atten_mask.unsqueeze(dim=0)) preds = torch.argmax(outputs[0][0].cpu(), dim=1) was_masked = labels.cpu() != -100 preds = torch.where(was_masked, preds, -100) num_preds = torch.sum(was_masked).item() p_female.append(len(torch.where(preds==0)[0])/num_preds*100) p_male.append(len(torch.where(preds==1)[0])/num_preds*100) dfs.append(pd.DataFrame({f"%f_{prefix}": p_female, f"%m_{prefix}": p_male})) results = pd.concat(dfs, axis=1).set_index("year") female_df = results.filter(regex=".*f_") female_df_for_plot = ( female_df.reset_index() ) # Gradio timeseries requires x-axis as column? male_df = results.filter(regex=".*m_") male_df_for_plot = ( male_df.reset_index() ) # Gradio timeseries requires x-axis as column? return ( target_text, female_df_for_plot, female_df, male_df_for_plot, male_df, ) title = "Changing Gender Pronouns" description = """ This is a demo for a project exploring possible spurious correlations in training datasets that can be exploited and manipulated to achieve alternative outcomes. In this case, manipulating `DATE` to change the predicted gender pronouns for both the BERT base model and a model fine-tuned with a specific pronoun predicting task using the [wiki-bio](https://huggingface.co/datasets/wiki_bio) dataset. One way to explain phenomena is by looking at a likely data generating process for biographical-like data in both the main BERT training dataset as well as the `wiki_bio` dataset, in the form of a causal DAG. In the DAG, we can see that `birth_place`, `birth_date` and `gender` are all independent elements that have no common cause with the other covariates in the DAG. However `birth_place`, `birth_date` and `gender` may all have a role in causing one's `access_to_resources`, with the general trend that `access_to_resources` has become less gender-dependent over time, but not in every `birth_place`, with recent events in Afghanistan providing a stark counterexample to this trend. `access_to_resources` further determines how or if at all, you may appear in the dataset’s `context_words`. We also argue that although there are complex causal interactions between words in a segment, the `context_words` are more likely to cause the `gender_pronouns`, rather than vice versa. For example, if the subject is a famous doctor and the object is her wealthy father, these context words will determine which person is being referred to, and thus which gendered-pronoun to use. In this graph, any pink path between `context_words` and `gender_pronouns` will allow the flow of statistical correlation (regardless of direction of the causal arrow), inviting confounding and thus spurious correlations into the trained model.