Spaces:
Running
Running
File size: 9,450 Bytes
06b45ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# %%
# from http.client import TEMPORARY_REDIRECT
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline
from winogender_sentences import get_sentences
MODEL_NAMES = ["roberta-large", "roberta-base",
"bert-large-uncased", "bert-base-uncased"]
OWN_MODEL_NAME = 'add-a-model'
PICK_YOUR_OWN_LABEL = 'pick-your-own'
DECIMAL_PLACES = 1
EPS = 1e-5 # to avoid /0 errors
NUM_PTS_TO_AVERAGE = 4
# Example date conts
DATE_SPLIT_KEY = "DATE"
START_YEAR = 1901
STOP_YEAR = 2016
NUM_PTS = 30
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
DATES = [f'{d}' for d in DATES]
GENDERED_LIST = [
['he', 'she'],
['him', 'her'],
['his', 'hers'],
["himself", "herself"],
['male', 'female'],
# ['man', 'woman'] Explicitly added in winogender extended sentences
['men', 'women'],
["husband", "wife"],
['father', 'mother'],
['boyfriend', 'girlfriend'],
['brother', 'sister'],
["actor", "actress"],
]
# %%
# Fire up the models
models = dict()
for bert_like in MODEL_NAMES:
models[bert_like] = pipeline("fill-mask", model=bert_like)
# %%
# Get the winogender sentences
winogender_sentences = get_sentences()
occs = sorted(list({sentence_id.split('_')[0]
for sentence_id in winogender_sentences}))
# %%
def get_gendered_token_ids():
male_gendered_tokens = [list[0] for list in GENDERED_LIST]
female_gendered_tokens = [list[1] for list in GENDERED_LIST]
return male_gendered_tokens, female_gendered_tokens
def get_winogender_texts(occ):
return [winogender_sentences[id] for id in winogender_sentences.keys() if id.split('_')[0] == occ]
def display_input_texts(occ, alt_text):
if occ == PICK_YOUR_OWN_LABEL:
texts = alt_text.split('\n')
else:
texts = get_winogender_texts(occ)
display_texts = [
f"{i+1}) {text}" for (i, text) in enumerate(texts)]
return "\n".join(display_texts), texts
def get_avg_prob_from_pipeline_outputs(pipeline_preds, gendered_tokens, num_preds):
pronoun_preds = [sum([
pronoun["score"] if pronoun["token_str"].strip(
).lower() in gendered_tokens else 0.0
for pronoun in top_preds])
for top_preds in pipeline_preds
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
def is_top_pred_gendered(pipeline_preds, gendered_tokens):
return pipeline_preds[0][0]['token_str'].strip().lower() in gendered_tokens
# %%
def get_figure(df, model_name, occ):
xs = df[df.columns[0]]
ys = df[df.columns[1]]
fig, ax = plt.subplots()
# Trying small fig due to rendering issues on HF, not on VS Code
fig.set_figheight(3)
fig.set_figwidth(9)
ax.bar(xs, ys)
ax.axis('tight')
ax.set_xlabel("Sentence number")
ax.set_ylabel("Uncertainty metric")
ax.set_title(
f"Uncertainty in {model_name} gender pronoun predictions in {occ} sentences.")
return fig
# %%
def predict_gender_pronouns(
model_name,
own_model_name,
texts,
occ,
):
"""Run inference on input_text for selected model type, returning uncertainty results.
"""
# TODO: make these selectable by user
indie_vars = ', '.join(DATES)
num_ave = NUM_PTS_TO_AVERAGE
# For debugging
print('input_texts', texts)
if model_name is None or model_name == '':
model = models[MODEL_NAMES[0]]
elif model_name not in MODEL_NAMES:
model = pipeline("fill-mask", model=own_model_name)
else:
model = models[model_name]
mask_token = model.tokenizer.mask_token
indie_vars_list = indie_vars.split(',')
male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()
masked_texts = [text.replace('MASK', mask_token) for text in texts]
all_uncertainty_f = {}
not_top_gendered = set()
for i, text in enumerate(masked_texts):
female_pronoun_preds = []
male_pronoun_preds = []
top_pred_gendered = True # Assume true unless told otherwise
print(f"{i+1}) {text}")
for indie_var in indie_vars_list[:num_ave] + indie_vars_list[-num_ave:]:
target_text = f"In {indie_var}: {text}"
pipeline_preds = model(target_text)
# Quick hack as realized return type based on how many MASKs in text.
if type(pipeline_preds[0]) is not list:
pipeline_preds = [pipeline_preds]
# If top-pred not gendered, record as such
if not is_top_pred_gendered(pipeline_preds, female_gendered_tokens + male_gendered_tokens):
top_pred_gendered = False
num_preds = 1 # By design
female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
pipeline_preds,
female_gendered_tokens,
num_preds
))
male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
pipeline_preds,
male_gendered_tokens,
num_preds
))
# Normalizing by all gendered predictions
total_gendered_probs = np.add(
female_pronoun_preds, male_pronoun_preds)
norm_female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
decimals=DECIMAL_PLACES
)
sent_idx = f"{i+1}" if top_pred_gendered else f"{i+1}*"
all_uncertainty_f[sent_idx] = round(abs((sum(norm_female_pronoun_preds[-num_ave:]) - sum(norm_female_pronoun_preds[:num_ave]))
/ num_ave), DECIMAL_PLACES)
uncertain_df = pd.DataFrame.from_dict(
all_uncertainty_f, orient='index', columns=['Uncertainty metric'])
uncertain_df = uncertain_df.reset_index().rename(
columns={'index': 'Sentence number'})
return (
uncertain_df,
get_figure(uncertain_df, model_name, occ),
)
# %%
demo = gr.Blocks()
with demo:
input_texts = gr.Variable([])
gr.Markdown("## Are you certain?")
gr.Markdown(
"LLMs are pretty good at reporting their uncertainty. We just need to ask the right way.")
gr.Markdown("Using our uncertainty metric informed by applying causal inference techniques in \
[Selection Collider Bias in Large Language Models](https://arxiv.org/abs/2208.10063), \
we are able to identify likely spurious correlations and exploit them in \
the scenario of gender underspecified tasks. (Note that introspecting softmax probabilities alone is insufficient, as in the sentences \
below, LLMs may report a softmax prob of ~0.9 despite the task being underspecified.)")
gr.Markdown("We extend the [Winogender Schemas](https://github.com/rudinger/winogender-schemas) evaluation set to produce\
eight syntactically similar sentences. However semantically, \
only two of the sentences are gender-specified while the rest remain gender-underspecified")
gr.Markdown("If a model can reliably tell us when it is uncertain about its predictions, one can replace only those uncertain predictions with\
information retrieval methods, or in the case of gender pronoun prediction, a coin toss.")
with gr.Row():
model_name = gr.Radio(
MODEL_NAMES + [OWN_MODEL_NAME],
type="value",
label="Pick a preloaded BERT-like model for uncertainty evaluation (note: BERT-base performance least consistant)...",
)
own_model_name = gr.Textbox(
label=f"...Or, if you selected an '{OWN_MODEL_NAME}' model, put any Hugging Face pipeline model name \
(that supports the [fill-mask task](https://huggingface.co/models?pipeline_tag=fill-mask)) here.",
)
with gr.Row():
occ_box = gr.Radio(
occs+[PICK_YOUR_OWN_LABEL], label=f"Pick an Occupation type from the Winogender Schemas evaluation set, or select '{PICK_YOUR_OWN_LABEL}'\
(it need not be about an occupation).")
with gr.Row():
alt_input_texts = gr.Textbox(
lines=2,
label=f"...If you selected '{PICK_YOUR_OWN_LABEL}' above, add your own texts new-line delimited sentences here. Be sure\
to include a single MASK-ed out pronoun. \
If unsure on the required format, click an occupation above instead, to see some example input texts for this round.",
)
with gr.Row():
get_text_btn = gr.Button("Load input texts")
get_text_btn.click(
fn=display_input_texts,
inputs=[occ_box, alt_input_texts],
outputs=[gr.Textbox(
label='Numbered sentences for evaluation. Number below corresponds to number in x-axis of plot.'), input_texts],
)
with gr.Row():
uncertain_btn = gr.Button("Get uncertainty results!")
gr.Markdown(
"If there is an * by a sentence number, then at least one top prediction for that sentence was non-gendered.")
with gr.Row():
female_fig = gr.Plot(type="auto")
with gr.Row():
female_df = gr.Dataframe()
uncertain_btn.click(
fn=predict_gender_pronouns,
inputs=[model_name, own_model_name, input_texts, occ_box],
# inputs=date_example,
outputs=[female_df, female_fig]
)
demo.launch(debug=True)
# %%
|