emraza110 commited on
Commit
eb9a0b7
·
verified ·
1 Parent(s): b15db9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -1
app.py CHANGED
@@ -1,3 +1,127 @@
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- gr.load("models/mlabonne/NeuralHermes-2.5-Mistral-7B-laser").launch()
 
 
1
+
2
+ import os
3
+ from threading import Thread
4
+ from typing import Iterator
5
+
6
  import gradio as gr
7
+ import spaces
8
+ import torch
9
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
10
+
11
+ DESCRIPTION = "# NeuralHermes-2.5-Mistral-7B-laser"
12
+
13
+ if not torch.cuda.is_available():
14
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
15
+
16
+ MAX_MAX_NEW_TOKENS = 2048
17
+ DEFAULT_MAX_NEW_TOKENS = 1024
18
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
19
+
20
+ if torch.cuda.is_available():
21
+ model_id = "mlabonne/NeuralHermes-2.5-Mistral-7B-laser"
22
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
23
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
24
+
25
+
26
+ @spaces.GPU
27
+ def generate(
28
+ message: str,
29
+ chat_history: list[tuple[str, str]],
30
+ max_new_tokens: int = 1024,
31
+ temperature: float = 0.6,
32
+ top_p: float = 0.9,
33
+ top_k: int = 50,
34
+ repetition_penalty: float = 1.2,
35
+ ) -> Iterator[str]:
36
+ conversation = []
37
+ for user, assistant in chat_history:
38
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
39
+ conversation.append({"role": "user", "content": message})
40
+
41
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
42
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
43
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
44
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
45
+ input_ids = input_ids.to(model.device)
46
+
47
+ streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
48
+ generate_kwargs = dict(
49
+ {"input_ids": input_ids},
50
+ streamer=streamer,
51
+ max_new_tokens=max_new_tokens,
52
+ do_sample=True,
53
+ top_p=top_p,
54
+ top_k=top_k,
55
+ temperature=temperature,
56
+ num_beams=1,
57
+ repetition_penalty=repetition_penalty,
58
+ )
59
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
60
+ t.start()
61
+
62
+ outputs = []
63
+ for text in streamer:
64
+ outputs.append(text)
65
+ yield "".join(outputs)
66
+
67
+
68
+ chat_interface = gr.ChatInterface(
69
+ fn=generate,
70
+ additional_inputs=[
71
+ gr.Slider(
72
+ label="Max new tokens",
73
+ minimum=1,
74
+ maximum=MAX_MAX_NEW_TOKENS,
75
+ step=1,
76
+ value=DEFAULT_MAX_NEW_TOKENS,
77
+ ),
78
+ gr.Slider(
79
+ label="Temperature",
80
+ minimum=0.1,
81
+ maximum=4.0,
82
+ step=0.1,
83
+ value=0.6,
84
+ ),
85
+ gr.Slider(
86
+ label="Top-p (nucleus sampling)",
87
+ minimum=0.05,
88
+ maximum=1.0,
89
+ step=0.05,
90
+ value=0.9,
91
+ ),
92
+ gr.Slider(
93
+ label="Top-k",
94
+ minimum=1,
95
+ maximum=1000,
96
+ step=1,
97
+ value=50,
98
+ ),
99
+ gr.Slider(
100
+ label="Repetition penalty",
101
+ minimum=1.0,
102
+ maximum=2.0,
103
+ step=0.05,
104
+ value=1.2,
105
+ ),
106
+ ],
107
+ stop_btn=None,
108
+ examples=[
109
+ ["Hello there! How are you doing?"],
110
+ ["Can you explain briefly to me what is the Python programming language?"],
111
+ ["Explain the plot of Cinderella in a sentence."],
112
+ ["How many hours does it take a man to eat a Helicopter?"],
113
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
114
+ ],
115
+ )
116
+
117
+ with gr.Blocks() as demo:
118
+ gr.Markdown(DESCRIPTION)
119
+ gr.DuplicateButton(
120
+ value="Duplicate Space for private use",
121
+ elem_id="duplicate-button",
122
+ visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
123
+ )
124
+ chat_interface.render()
125
 
126
+ if __name__ == "__main__":
127
+ demo.queue(max_size=20).launch()