Spaces:
Runtime error
Runtime error
File size: 4,534 Bytes
ddcecdf 7ae2fd5 ddcecdf 7ae2fd5 78184f0 7ae2fd5 78184f0 7ae2fd5 ddcecdf 7ae2fd5 ddcecdf dcc574b ddcecdf 78184f0 ddcecdf 78184f0 ddcecdf 78184f0 ddcecdf 78184f0 ddcecdf 78184f0 ddcecdf 78184f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
from __future__ import annotations
import pandas as pd
import streamlit as st
import plotly.express as px
from models import NLI_MODEL_OPTIONS, NSP_MODEL_OPTIONS, METHOD_OPTIONS
from zeroshot_turkish.classifiers import NSPZeroshotClassifier, NLIZeroshotClassifier
def init_state(key: str):
if key not in st.session_state:
st.session_state[key] = None
for k in [
"current_model",
"current_model_option",
"current_method_option",
"current_prediction",
"current_chart",
]:
init_state(k)
def load_model(model_option: str, method_option: str, random_state: int = 0):
with st.spinner("Loading selected model..."):
if method_option == "Natural Language Inference":
st.session_state.current_model = NLIZeroshotClassifier(
model_name=model_option, random_state=random_state
)
else:
st.session_state.current_model = NSPZeroshotClassifier(
model_name=model_option, random_state=random_state
)
st.success("Model loaded!")
def visualize_output(labels: list[str], probabilities: list[float]):
data = pd.DataFrame({"labels": labels, "probability": probabilities}).sort_values(
by="probability", ascending=False
)
chart = px.bar(
data,
x="probability",
y="labels",
color="labels",
orientation="h",
height=290,
width=500,
).update_layout(
{
"xaxis": {"title": "probability", "visible": True, "showticklabels": True},
"yaxis": {"title": None, "visible": True, "showticklabels": True},
"margin": dict(
l=10, # left
r=10, # right
t=50, # top
b=10, # bottom
),
"showlegend": False,
}
)
return chart
st.title("Zero-shot Turkish Text Classification")
method_option = st.radio(
"Select a zero-shot classification method.",
[
METHOD_OPTIONS["nli"],
METHOD_OPTIONS["nsp"],
],
)
if method_option == METHOD_OPTIONS["nli"]:
model_option = st.selectbox(
"Select a natural language inference model.", NLI_MODEL_OPTIONS, index=3
)
if method_option == METHOD_OPTIONS["nsp"]:
model_option = st.selectbox(
"Select a BERT model for next sentence prediction.", NSP_MODEL_OPTIONS, index=0
)
if model_option != st.session_state.current_model_option:
st.session_state.current_model_option = model_option
st.session_state.current_method_option = method_option
load_model(
st.session_state.current_model_option, st.session_state.current_method_option
)
st.header("Configure prompts and labels")
col1, col2 = st.columns(2)
col1.subheader("Candidate labels")
labels = col1.text_area(
label="These are the labels that the model will try to predict for the given text input. Your input labels should be comma separated and meaningful.",
value="spor,dünya,siyaset,ekonomi,sanat",
key="current_labels",
)
col1.header("Make predictions")
text = col1.text_area(
"Enter a sentence or a paragraph to classify.",
value="Ian Anderson, Jethro Tull konserinde yan flüt çalarak zeybek oynadı.",
key="current_text",
)
col2.subheader("Prompt template")
prompt_template = col2.text_area(
label="Prompt template is used to transform NLI and NSP tasks into a general-use zero-shot classifier. Models replace {} with the labels that you have given.",
value="Bu metin {} kategorisine aittir",
key="current_template",
)
col2.header("")
make_pred = col1.button("Predict")
if make_pred:
st.session_state.current_prediction = (
st.session_state.current_model.predict_on_texts(
[st.session_state.current_text],
candidate_labels=st.session_state.current_labels.split(","),
prompt_template=st.session_state.current_template,
)
)
if "scores" in st.session_state.current_prediction[0]:
st.session_state.current_chart = visualize_output(
st.session_state.current_prediction[0]["labels"],
st.session_state.current_prediction[0]["scores"],
)
elif "probabilities" in st.session_state.current_prediction[0]:
st.session_state.current_chart = visualize_output(
st.session_state.current_prediction[0]["labels"],
st.session_state.current_prediction[0]["probabilities"],
)
col2.plotly_chart(st.session_state.current_chart, use_container_width=True)
|