|
from io import BytesIO |
|
|
|
import string |
|
import gradio as gr |
|
import requests |
|
from utils import Endpoint, get_token |
|
|
|
|
|
def encode_image(image): |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
buffered.seek(0) |
|
|
|
return buffered |
|
|
|
|
|
def query_chat_api( |
|
image, prompt, decoding_method, temperature, len_penalty, repetition_penalty |
|
): |
|
|
|
url = endpoint.url |
|
|
|
headers = { |
|
"User-Agent": "BLIP-2 HuggingFace Space", |
|
"Auth-Token": get_token(), |
|
} |
|
|
|
data = { |
|
"prompt": prompt, |
|
"use_nucleus_sampling": decoding_method == "Nucleus sampling", |
|
"temperature": temperature, |
|
"length_penalty": len_penalty, |
|
"repetition_penalty": repetition_penalty, |
|
} |
|
|
|
image = encode_image(image) |
|
files = {"image": image} |
|
|
|
response = requests.post(url, data=data, files=files, headers=headers) |
|
|
|
if response.status_code == 200: |
|
return response.json() |
|
else: |
|
return "Error: " + response.text |
|
|
|
|
|
def query_caption_api( |
|
image, decoding_method, temperature, len_penalty, repetition_penalty |
|
): |
|
|
|
url = endpoint.url |
|
|
|
url = url.replace("/generate", "/caption") |
|
|
|
headers = { |
|
"User-Agent": "BLIP-2 HuggingFace Space", |
|
"Auth-Token": get_token(), |
|
} |
|
|
|
data = { |
|
"use_nucleus_sampling": decoding_method == "Nucleus sampling", |
|
"temperature": temperature, |
|
"length_penalty": len_penalty, |
|
"repetition_penalty": repetition_penalty, |
|
} |
|
|
|
image = encode_image(image) |
|
files = {"image": image} |
|
|
|
response = requests.post(url, data=data, files=files, headers=headers) |
|
|
|
if response.status_code == 200: |
|
return response.json() |
|
else: |
|
return "Error: " + response.text |
|
|
|
|
|
def postprocess_output(output): |
|
|
|
if not output[0][-1] in string.punctuation: |
|
output[0] += "." |
|
|
|
return output |
|
|
|
|
|
def inference_chat( |
|
image, |
|
text_input, |
|
decoding_method, |
|
temperature, |
|
length_penalty, |
|
repetition_penalty, |
|
history=[], |
|
): |
|
text_input = text_input |
|
history.append(text_input) |
|
|
|
prompt = " ".join(history) |
|
|
|
output = query_chat_api( |
|
image, prompt, decoding_method, temperature, length_penalty, repetition_penalty |
|
) |
|
output = postprocess_output(output) |
|
history += output |
|
|
|
chat = [ |
|
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) |
|
] |
|
|
|
return {chatbot: chat, state: history} |
|
|
|
|
|
def inference_caption( |
|
image, |
|
decoding_method, |
|
temperature, |
|
length_penalty, |
|
repetition_penalty, |
|
): |
|
output = query_caption_api( |
|
image, decoding_method, temperature, length_penalty, repetition_penalty |
|
) |
|
|
|
return output[0] |
|
|
|
|
|
title = """<h1 align="center">BLIP-2</h1>""" |
|
description = """Gradio demo for BLIP-2, image-to-text generation from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. |
|
<br> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected.""" |
|
article = """<strong>Paper</strong>: <a href='https://arxiv.org/abs/2301.12597' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a> |
|
<br> <strong>Code</strong>: BLIP2 is now integrated into GitHub repo: <a href='https://github.com/salesforce/LAVIS' target='_blank'>LAVIS: a One-stop Library for Language and Vision</a> |
|
<br> <strong>Project Page</strong>: <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'> BLIP2 on LAVIS</a> |
|
<br> <strong>Description</strong>: Captioning results from <strong>BLIP2_OPT_6.7B</strong>. Chat results from <strong>BLIP2_FlanT5xxl</strong>. |
|
<br> <p style="color:red">We are shutting down the server for updates and will get back soon. Thanks for your patience.</p> |
|
""" |
|
|
|
endpoint = Endpoint() |
|
|
|
examples = [ |
|
["house.png", "How could someone get out of the house?"], |
|
["flower.jpg", "Question: What is this flower and where is it's origin? Answer:"], |
|
["pizza.jpg", "What are steps to cook it?"], |
|
["sunset.jpg", "Here is a romantic message going along the photo:"], |
|
["forbidden_city.webp", "In what dynasties was this place built?"], |
|
] |
|
|
|
with gr.Blocks( |
|
css=""" |
|
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px} |
|
#component-21 > div.wrap.svelte-w6rprc {height: 600px;} |
|
""" |
|
) as iface: |
|
state = gr.State([]) |
|
|
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
gr.Markdown(article) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(type="pil") |
|
|
|
|
|
sampling = gr.Radio( |
|
choices=["Beam search", "Nucleus sampling"], |
|
value="Beam search", |
|
label="Text Decoding Method", |
|
interactive=True, |
|
) |
|
|
|
temperature = gr.Slider( |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature (used with nucleus sampling)", |
|
) |
|
|
|
len_penalty = gr.Slider( |
|
minimum=-1.0, |
|
maximum=2.0, |
|
value=1.0, |
|
step=0.2, |
|
interactive=True, |
|
label="Length Penalty (set to larger for longer sequence, used with beam search)", |
|
) |
|
|
|
rep_penalty = gr.Slider( |
|
minimum=1.0, |
|
maximum=5.0, |
|
value=1.5, |
|
step=0.5, |
|
interactive=True, |
|
label="Repeat Penalty (larger value prevents repetition)", |
|
) |
|
|
|
with gr.Column(scale=1.8): |
|
|
|
with gr.Column(): |
|
caption_output = gr.Textbox(lines=1, label="Caption Output") |
|
caption_button = gr.Button( |
|
value="Caption it!", interactive=True, variant="primary" |
|
) |
|
caption_button.click( |
|
inference_caption, |
|
[ |
|
image_input, |
|
sampling, |
|
temperature, |
|
len_penalty, |
|
rep_penalty, |
|
], |
|
[caption_output], |
|
) |
|
|
|
gr.Markdown("""Trying prompting your input for chat; e.g. example prompt for QA, \"Question: {} Answer:\" Use proper punctuation (e.g., question mark).""") |
|
with gr.Row(): |
|
with gr.Column( |
|
scale=1.5, |
|
): |
|
chatbot = gr.Chatbot( |
|
label="Chat Output (from FlanT5)", |
|
) |
|
|
|
|
|
with gr.Column(scale=1): |
|
chat_input = gr.Textbox(lines=1, label="Chat Input") |
|
chat_input.submit( |
|
inference_chat, |
|
[ |
|
image_input, |
|
chat_input, |
|
sampling, |
|
temperature, |
|
len_penalty, |
|
rep_penalty, |
|
state, |
|
], |
|
[chatbot, state], |
|
) |
|
|
|
with gr.Row(): |
|
clear_button = gr.Button(value="Clear", interactive=True) |
|
clear_button.click( |
|
lambda: ("", [], []), |
|
[], |
|
[chat_input, chatbot, state], |
|
queue=False, |
|
) |
|
|
|
submit_button = gr.Button( |
|
value="Submit", interactive=True, variant="primary" |
|
) |
|
submit_button.click( |
|
inference_chat, |
|
[ |
|
image_input, |
|
chat_input, |
|
sampling, |
|
temperature, |
|
len_penalty, |
|
rep_penalty, |
|
state, |
|
], |
|
[chatbot, state], |
|
) |
|
|
|
image_input.change( |
|
lambda: ("", "", []), |
|
[], |
|
[chatbot, caption_output, state], |
|
queue=False, |
|
) |
|
|
|
examples = gr.Examples( |
|
examples=examples, |
|
inputs=[image_input, chat_input], |
|
) |
|
|
|
iface.queue(concurrency_count=1, api_open=False, max_size=10) |
|
iface.launch(enable_queue=True) |
|
|