|
from dataclasses import dataclass, field |
|
|
|
from TTS.config import BaseAudioConfig, BaseTrainingConfig |
|
|
|
|
|
@dataclass |
|
class BaseVocoderConfig(BaseTrainingConfig): |
|
"""Shared parameters among all the vocoder models. |
|
Args: |
|
audio (BaseAudioConfig): |
|
Audio processor config instance. Defaultsto `BaseAudioConfig()`. |
|
use_noise_augment (bool): |
|
Augment the input audio with random noise. Defaults to False/ |
|
eval_split_size (int): |
|
Number of instances used for evaluation. Defaults to 10. |
|
data_path (str): |
|
Root path of the training data. All the audio files found recursively from this root path are used for |
|
training. Defaults to `""`. |
|
feature_path (str): |
|
Root path to the precomputed feature files. Defaults to None. |
|
seq_len (int): |
|
Length of the waveform segments used for training. Defaults to 1000. |
|
pad_short (int): |
|
Extra padding for the waveforms shorter than `seq_len`. Defaults to 0. |
|
conv_path (int): |
|
Extra padding for the feature frames against convolution of the edge frames. Defaults to MISSING. |
|
Defaults to 0. |
|
use_cache (bool): |
|
enable / disable in memory caching of the computed features. If the RAM is not enough, if may cause OOM. |
|
Defaults to False. |
|
epochs (int): |
|
Number of training epochs to. Defaults to 10000. |
|
wd (float): |
|
Weight decay. |
|
optimizer (torch.optim.Optimizer): |
|
Optimizer used for the training. Defaults to `AdamW`. |
|
optimizer_params (dict): |
|
Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` |
|
""" |
|
|
|
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig) |
|
|
|
use_noise_augment: bool = False |
|
eval_split_size: int = 10 |
|
|
|
data_path: str = "" |
|
feature_path: str = None |
|
seq_len: int = 1000 |
|
pad_short: int = 0 |
|
conv_pad: int = 0 |
|
use_cache: bool = False |
|
|
|
epochs: int = 500 |
|
wd: float = 0.0 |
|
optimizer: str = "AdamW" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) |
|
|
|
|
|
@dataclass |
|
class BaseGANVocoderConfig(BaseVocoderConfig): |
|
"""Base config class used among all the GAN based vocoders. |
|
Args: |
|
use_stft_loss (bool): |
|
enable / disable the use of STFT loss. Defaults to True. |
|
use_subband_stft_loss (bool): |
|
enable / disable the use of Subband STFT loss. Defaults to True. |
|
use_mse_gan_loss (bool): |
|
enable / disable the use of Mean Squared Error based GAN loss. Defaults to True. |
|
use_hinge_gan_loss (bool): |
|
enable / disable the use of Hinge GAN loss. Defaults to True. |
|
use_feat_match_loss (bool): |
|
enable / disable feature matching loss. Defaults to True. |
|
use_l1_spec_loss (bool): |
|
enable / disable L1 spectrogram loss. Defaults to True. |
|
stft_loss_weight (float): |
|
Loss weight that multiplies the computed loss value. Defaults to 0. |
|
subband_stft_loss_weight (float): |
|
Loss weight that multiplies the computed loss value. Defaults to 0. |
|
mse_G_loss_weight (float): |
|
Loss weight that multiplies the computed loss value. Defaults to 1. |
|
hinge_G_loss_weight (float): |
|
Loss weight that multiplies the computed loss value. Defaults to 0. |
|
feat_match_loss_weight (float): |
|
Loss weight that multiplies the computed loss value. Defaults to 100. |
|
l1_spec_loss_weight (float): |
|
Loss weight that multiplies the computed loss value. Defaults to 45. |
|
stft_loss_params (dict): |
|
Parameters for the STFT loss. Defaults to `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}`. |
|
l1_spec_loss_params (dict): |
|
Parameters for the L1 spectrogram loss. Defaults to |
|
`{ |
|
"use_mel": True, |
|
"sample_rate": 32000, |
|
"n_fft": 1024, |
|
"hop_length": 256, |
|
"win_length": 1024, |
|
"n_mels": 80, |
|
"mel_fmin": 0.0, |
|
"mel_fmax": None, |
|
}` |
|
target_loss (str): |
|
Target loss name that defines the quality of the model. Defaults to `G_avg_loss`. |
|
grad_clip (list): |
|
A list of gradient clipping theresholds for each optimizer. Any value less than 0 disables clipping. |
|
Defaults to [5, 5]. |
|
lr_gen (float): |
|
Generator model initial learning rate. Defaults to 0.0002. |
|
lr_disc (float): |
|
Discriminator model initial learning rate. Defaults to 0.0002. |
|
lr_scheduler_gen (torch.optim.Scheduler): |
|
Learning rate scheduler for the generator. Defaults to `ExponentialLR`. |
|
lr_scheduler_gen_params (dict): |
|
Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`. |
|
lr_scheduler_disc (torch.optim.Scheduler): |
|
Learning rate scheduler for the discriminator. Defaults to `ExponentialLR`. |
|
lr_scheduler_disc_params (dict): |
|
Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`. |
|
scheduler_after_epoch (bool): |
|
Whether to update the learning rate schedulers after each epoch. Defaults to True. |
|
use_pqmf (bool): |
|
enable / disable PQMF for subband approximation at training. Defaults to False. |
|
steps_to_start_discriminator (int): |
|
Number of steps required to start training the discriminator. Defaults to 0. |
|
diff_samples_for_G_and_D (bool): |
|
enable / disable use of different training samples for the generator and the discriminator iterations. |
|
Enabling it results in slower iterations but faster convergance in some cases. Defaults to False. |
|
""" |
|
|
|
model: str = "gan" |
|
|
|
|
|
use_stft_loss: bool = True |
|
use_subband_stft_loss: bool = True |
|
use_mse_gan_loss: bool = True |
|
use_hinge_gan_loss: bool = True |
|
use_feat_match_loss: bool = True |
|
use_l1_spec_loss: bool = True |
|
|
|
|
|
stft_loss_weight: float = 0 |
|
subband_stft_loss_weight: float = 0 |
|
mse_G_loss_weight: float = 1 |
|
hinge_G_loss_weight: float = 0 |
|
feat_match_loss_weight: float = 100 |
|
l1_spec_loss_weight: float = 45 |
|
|
|
stft_loss_params: dict = field( |
|
default_factory=lambda: { |
|
"n_ffts": [1024, 2048, 512], |
|
"hop_lengths": [120, 240, 50], |
|
"win_lengths": [600, 1200, 240], |
|
} |
|
) |
|
|
|
l1_spec_loss_params: dict = field( |
|
default_factory=lambda: { |
|
"use_mel": True, |
|
"sample_rate": 32000, |
|
"n_fft": 1024, |
|
"hop_length": 256, |
|
"win_length": 1024, |
|
"n_mels": 80, |
|
"mel_fmin": 0.0, |
|
"mel_fmax": None, |
|
} |
|
) |
|
|
|
target_loss: str = "loss_0" |
|
|
|
|
|
grad_clip: float = field(default_factory=lambda: [5, 5]) |
|
lr_gen: float = 0.0002 |
|
lr_disc: float = 0.0002 |
|
lr_scheduler_gen: str = "ExponentialLR" |
|
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) |
|
lr_scheduler_disc: str = "ExponentialLR" |
|
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) |
|
scheduler_after_epoch: bool = True |
|
|
|
use_pqmf: bool = False |
|
steps_to_start_discriminator = 0 |
|
diff_samples_for_G_and_D: bool = False |
|
|