Shadhil's picture
voice-clone with single audio sample input
9b2107c
import os
import time
from typing import List
import numpy as np
import pysbd
import torch
from torch import nn
from TTS.config import load_config
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.models import setup_model as setup_tts_model
from TTS.tts.models.vits import Vits
# pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import synthesis, transfer_voice, trim_silence
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.numpy_transforms import save_wav
from TTS.vc.models import setup_model as setup_vc_model
from TTS.vocoder.models import setup_model as setup_vocoder_model
from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input
class Synthesizer(nn.Module):
def __init__(
self,
tts_checkpoint: str = "",
tts_config_path: str = "",
tts_speakers_file: str = "",
tts_languages_file: str = "",
vocoder_checkpoint: str = "",
vocoder_config: str = "",
encoder_checkpoint: str = "",
encoder_config: str = "",
vc_checkpoint: str = "",
vc_config: str = "",
model_dir: str = "",
voice_dir: str = None,
use_cuda: bool = False,
) -> None:
"""General 🐸 TTS interface for inference. It takes a tts and a vocoder
model and synthesize speech from the provided text.
The text is divided into a list of sentences using `pysbd` and synthesize
speech on each sentence separately.
If you have certain special characters in your text, you need to handle
them before providing the text to Synthesizer.
TODO: set the segmenter based on the source language
Args:
tts_checkpoint (str, optional): path to the tts model file.
tts_config_path (str, optional): path to the tts config file.
vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`,
encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`,
vc_checkpoint (str, optional): path to the voice conversion model file. Defaults to `""`,
vc_config (str, optional): path to the voice conversion config file. Defaults to `""`,
use_cuda (bool, optional): enable/disable cuda. Defaults to False.
"""
super().__init__()
self.tts_checkpoint = tts_checkpoint
self.tts_config_path = tts_config_path
self.tts_speakers_file = tts_speakers_file
self.tts_languages_file = tts_languages_file
self.vocoder_checkpoint = vocoder_checkpoint
self.vocoder_config = vocoder_config
self.encoder_checkpoint = encoder_checkpoint
self.encoder_config = encoder_config
self.vc_checkpoint = vc_checkpoint
self.vc_config = vc_config
self.use_cuda = use_cuda
self.tts_model = None
self.vocoder_model = None
self.vc_model = None
self.speaker_manager = None
self.tts_speakers = {}
self.language_manager = None
self.num_languages = 0
self.tts_languages = {}
self.d_vector_dim = 0
self.seg = self._get_segmenter("en")
self.use_cuda = use_cuda
self.voice_dir = voice_dir
if self.use_cuda:
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
if tts_checkpoint:
self._load_tts(tts_checkpoint, tts_config_path, use_cuda)
self.output_sample_rate = self.tts_config.audio["sample_rate"]
if vocoder_checkpoint:
self._load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda)
self.output_sample_rate = self.vocoder_config.audio["sample_rate"]
if vc_checkpoint:
self._load_vc(vc_checkpoint, vc_config, use_cuda)
self.output_sample_rate = self.vc_config.audio["output_sample_rate"]
if model_dir:
if "fairseq" in model_dir:
self._load_fairseq_from_dir(model_dir, use_cuda)
self.output_sample_rate = self.tts_config.audio["sample_rate"]
else:
self._load_tts_from_dir(model_dir, use_cuda)
self.output_sample_rate = self.tts_config.audio["output_sample_rate"]
@staticmethod
def _get_segmenter(lang: str):
"""get the sentence segmenter for the given language.
Args:
lang (str): target language code.
Returns:
[type]: [description]
"""
return pysbd.Segmenter(language=lang, clean=True)
def _load_vc(self, vc_checkpoint: str, vc_config_path: str, use_cuda: bool) -> None:
"""Load the voice conversion model.
1. Load the model config.
2. Init the model from the config.
3. Load the model weights.
4. Move the model to the GPU if CUDA is enabled.
Args:
vc_checkpoint (str): path to the model checkpoint.
tts_config_path (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
# pylint: disable=global-statement
self.vc_config = load_config(vc_config_path)
self.vc_model = setup_vc_model(config=self.vc_config)
self.vc_model.load_checkpoint(self.vc_config, vc_checkpoint)
if use_cuda:
self.vc_model.cuda()
def _load_fairseq_from_dir(self, model_dir: str, use_cuda: bool) -> None:
"""Load the fairseq model from a directory.
We assume it is VITS and the model knows how to load itself from the directory and there is a config.json file in the directory.
"""
self.tts_config = VitsConfig()
self.tts_model = Vits.init_from_config(self.tts_config)
self.tts_model.load_fairseq_checkpoint(self.tts_config, checkpoint_dir=model_dir, eval=True)
self.tts_config = self.tts_model.config
if use_cuda:
self.tts_model.cuda()
def _load_tts_from_dir(self, model_dir: str, use_cuda: bool) -> None:
"""Load the TTS model from a directory.
We assume the model knows how to load itself from the directory and there is a config.json file in the directory.
"""
config = load_config(os.path.join(model_dir, "config.json"))
self.tts_config = config
self.tts_model = setup_tts_model(config)
self.tts_model.load_checkpoint(config, checkpoint_dir=model_dir, eval=True)
if use_cuda:
self.tts_model.cuda()
def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None:
"""Load the TTS model.
1. Load the model config.
2. Init the model from the config.
3. Load the model weights.
4. Move the model to the GPU if CUDA is enabled.
5. Init the speaker manager in the model.
Args:
tts_checkpoint (str): path to the model checkpoint.
tts_config_path (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
# pylint: disable=global-statement
self.tts_config = load_config(tts_config_path)
if self.tts_config["use_phonemes"] and self.tts_config["phonemizer"] is None:
raise ValueError("Phonemizer is not defined in the TTS config.")
self.tts_model = setup_tts_model(config=self.tts_config)
if not self.encoder_checkpoint:
self._set_speaker_encoder_paths_from_tts_config()
self.tts_model.load_checkpoint(self.tts_config, tts_checkpoint, eval=True)
if use_cuda:
self.tts_model.cuda()
if self.encoder_checkpoint and hasattr(self.tts_model, "speaker_manager"):
self.tts_model.speaker_manager.init_encoder(self.encoder_checkpoint, self.encoder_config, use_cuda)
def _set_speaker_encoder_paths_from_tts_config(self):
"""Set the encoder paths from the tts model config for models with speaker encoders."""
if hasattr(self.tts_config, "model_args") and hasattr(
self.tts_config.model_args, "speaker_encoder_config_path"
):
self.encoder_checkpoint = self.tts_config.model_args.speaker_encoder_model_path
self.encoder_config = self.tts_config.model_args.speaker_encoder_config_path
def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None:
"""Load the vocoder model.
1. Load the vocoder config.
2. Init the AudioProcessor for the vocoder.
3. Init the vocoder model from the config.
4. Move the model to the GPU if CUDA is enabled.
Args:
model_file (str): path to the model checkpoint.
model_config (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
self.vocoder_config = load_config(model_config)
self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config.audio)
self.vocoder_model = setup_vocoder_model(self.vocoder_config)
self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True)
if use_cuda:
self.vocoder_model.cuda()
def split_into_sentences(self, text) -> List[str]:
"""Split give text into sentences.
Args:
text (str): input text in string format.
Returns:
List[str]: list of sentences.
"""
return self.seg.segment(text)
def save_wav(self, wav: List[int], path: str, pipe_out=None) -> None:
"""Save the waveform as a file.
Args:
wav (List[int]): waveform as a list of values.
path (str): output path to save the waveform.
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
"""
# if tensor convert to numpy
if torch.is_tensor(wav):
wav = wav.cpu().numpy()
if isinstance(wav, list):
wav = np.array(wav)
save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate, pipe_out=pipe_out)
def voice_conversion(self, source_wav: str, target_wav: str) -> List[int]:
output_wav = self.vc_model.voice_conversion(source_wav, target_wav)
return output_wav
def tts(
self,
text: str = "",
speaker_name: str = "",
language_name: str = "",
speaker_wav=None,
style_wav=None,
style_text=None,
reference_wav=None,
reference_speaker_name=None,
**kwargs,
) -> List[int]:
"""🐸 TTS magic. Run all the models and generate speech.
Args:
text (str): input text.
speaker_name (str, optional): speaker id for multi-speaker models. Defaults to "".
language_name (str, optional): language id for multi-language models. Defaults to "".
speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None.
style_wav ([type], optional): style waveform for GST. Defaults to None.
style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.
reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.
reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None.
Returns:
List[int]: [description]
"""
start_time = time.time()
wavs = []
if not text and not reference_wav:
raise ValueError(
"You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API."
)
if text:
sens = self.split_into_sentences(text)
print(" > Text splitted to sentences.")
print(sens)
# handle multi-speaker
if "voice_dir" in kwargs:
self.voice_dir = kwargs["voice_dir"]
kwargs.pop("voice_dir")
speaker_embedding = None
speaker_id = None
if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
if speaker_name and isinstance(speaker_name, str):
if self.tts_config.use_d_vector_file:
# get the average speaker embedding from the saved d_vectors.
speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding(
speaker_name, num_samples=None, randomize=False
)
speaker_embedding = np.array(speaker_embedding)[None, :] # [1 x embedding_dim]
else:
# get speaker idx from the speaker name
speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name]
# handle Neon models with single speaker.
elif len(self.tts_model.speaker_manager.name_to_id) == 1:
speaker_id = list(self.tts_model.speaker_manager.name_to_id.values())[0]
elif not speaker_name and not speaker_wav:
raise ValueError(
" [!] Looks like you are using a multi-speaker model. "
"You need to define either a `speaker_idx` or a `speaker_wav` to use a multi-speaker model."
)
else:
speaker_embedding = None
else:
if speaker_name and self.voice_dir is None:
raise ValueError(
f" [!] Missing speakers.json file path for selecting speaker {speaker_name}."
"Define path for speaker.json if it is a multi-speaker model or remove defined speaker idx. "
)
# handle multi-lingual
language_id = None
if self.tts_languages_file or (
hasattr(self.tts_model, "language_manager") and self.tts_model.language_manager is not None
):
if len(self.tts_model.language_manager.name_to_id) == 1:
language_id = list(self.tts_model.language_manager.name_to_id.values())[0]
elif language_name and isinstance(language_name, str):
try:
language_id = self.tts_model.language_manager.name_to_id[language_name]
except KeyError as e:
raise ValueError(
f" [!] Looks like you use a multi-lingual model. "
f"Language {language_name} is not in the available languages: "
f"{self.tts_model.language_manager.name_to_id.keys()}."
) from e
elif not language_name:
raise ValueError(
" [!] Look like you use a multi-lingual model. "
"You need to define either a `language_name` or a `style_wav` to use a multi-lingual model."
)
else:
raise ValueError(
f" [!] Missing language_ids.json file path for selecting language {language_name}."
"Define path for language_ids.json if it is a multi-lingual model or remove defined language idx. "
)
# compute a new d_vector from the given clip.
if speaker_wav is not None and self.tts_model.speaker_manager is not None:
speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(speaker_wav)
vocoder_device = "cpu"
use_gl = self.vocoder_model is None
if not use_gl:
vocoder_device = next(self.vocoder_model.parameters()).device
if self.use_cuda:
vocoder_device = "cuda"
if not reference_wav: # not voice conversion
for sen in sens:
if hasattr(self.tts_model, "synthesize"):
outputs = self.tts_model.synthesize(
text=sen,
config=self.tts_config,
speaker_id=speaker_name,
voice_dirs=self.voice_dir,
d_vector=speaker_embedding,
speaker_wav=speaker_wav,
language=language_name,
**kwargs,
)
else:
# synthesize voice
outputs = synthesis(
model=self.tts_model,
text=sen,
CONFIG=self.tts_config,
use_cuda=self.use_cuda,
speaker_id=speaker_id,
style_wav=style_wav,
style_text=style_text,
use_griffin_lim=use_gl,
d_vector=speaker_embedding,
language_id=language_id,
)
waveform = outputs["wav"]
if not use_gl:
mel_postnet_spec = outputs["outputs"]["model_outputs"][0].detach().cpu().numpy()
# denormalize tts output based on tts audio config
mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T
# renormalize spectrogram based on vocoder config
vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
# compute scale factor for possible sample rate mismatch
scale_factor = [
1,
self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate,
]
if scale_factor[1] != 1:
print(" > interpolating tts model output.")
vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
else:
vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable
# run vocoder model
# [1, T, C]
waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device))
if torch.is_tensor(waveform) and waveform.device != torch.device("cpu") and not use_gl:
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
waveform = waveform.squeeze()
# trim silence
if "do_trim_silence" in self.tts_config.audio and self.tts_config.audio["do_trim_silence"]:
waveform = trim_silence(waveform, self.tts_model.ap)
wavs += list(waveform)
wavs += [0] * 10000
else:
# get the speaker embedding or speaker id for the reference wav file
reference_speaker_embedding = None
reference_speaker_id = None
if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
if reference_speaker_name and isinstance(reference_speaker_name, str):
if self.tts_config.use_d_vector_file:
# get the speaker embedding from the saved d_vectors.
reference_speaker_embedding = self.tts_model.speaker_manager.get_embeddings_by_name(
reference_speaker_name
)[0]
reference_speaker_embedding = np.array(reference_speaker_embedding)[
None, :
] # [1 x embedding_dim]
else:
# get speaker idx from the speaker name
reference_speaker_id = self.tts_model.speaker_manager.name_to_id[reference_speaker_name]
else:
reference_speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(
reference_wav
)
outputs = transfer_voice(
model=self.tts_model,
CONFIG=self.tts_config,
use_cuda=self.use_cuda,
reference_wav=reference_wav,
speaker_id=speaker_id,
d_vector=speaker_embedding,
use_griffin_lim=use_gl,
reference_speaker_id=reference_speaker_id,
reference_d_vector=reference_speaker_embedding,
)
waveform = outputs
if not use_gl:
mel_postnet_spec = outputs[0].detach().cpu().numpy()
# denormalize tts output based on tts audio config
mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T
# renormalize spectrogram based on vocoder config
vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
# compute scale factor for possible sample rate mismatch
scale_factor = [
1,
self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate,
]
if scale_factor[1] != 1:
print(" > interpolating tts model output.")
vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
else:
vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable
# run vocoder model
# [1, T, C]
waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device))
if torch.is_tensor(waveform) and waveform.device != torch.device("cpu"):
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
wavs = waveform.squeeze()
# compute stats
process_time = time.time() - start_time
audio_time = len(wavs) / self.tts_config.audio["sample_rate"]
print(f" > Processing time: {process_time}")
print(f" > Real-time factor: {process_time / audio_time}")
return wavs