import gradio as gr import os from langchain import OpenAI, ConversationChain from langchain.prompts import PromptTemplate from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chains import RetrievalQAWithSourcesChain from langchain.chains.conversation.memory import ConversationEntityMemory from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from langchain import LLMChain memory = ConversationBufferMemory(memory_key="chat_history") persist_directory="db" llm=OpenAI(model_name = "text-davinci-003", temperature=0) model_name = "hkunlp/instructor-large" embed_instruction = "Represent the text from the BMW website for retrieval" query_instruction = "Query the most relevant text from the BMW website" embeddings = HuggingFaceInstructEmbeddings(model_name=model_name, embed_instruction=embed_instruction, query_instruction=query_instruction) vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) chain = RetrievalQAWithSourcesChain.from_chain_type(llm, chain_type="stuff", retriever=vectordb.as_retriever(), memory=memory) def chat(message, history): history = history or [] response = "" markdown = "" try: response = chain({"question": f"{message}"}, return_only_outputs=True) print('got response') markdown = generate_markdown(response) except Exception as e: print(f"Erorr: {e}") history.append((message, markdown)) return history, history def generate_markdown(obj): print('generating markdown') md_string = "" if 'answer' in obj: md_string += f"**Answer:**\n\n{obj['answer']}\n" if 'sources' in obj: sources_list = obj['sources'].strip().split('\n') md_string += "**Sources:**\n\n" for i, source in enumerate(sources_list): md_string += f"{i + 1}. {source}\n" return md_string with gr.Blocks() as demo: gr.Markdown("

BMW Chat Bot

") gr.Markdown("

Ask questions about BMW

") chatbot = gr.Chatbot() with gr.Row(): inp = gr.Textbox(placeholder="Question",label =None) btn = gr.Button("Run").style(full_width=False) state = gr.State() agent_state = gr.State() btn.click(chat, [inp, state],[chatbot, state]) gr.Examples( examples=[ "What is BMW doing about sustainability?", "What is the future of BMW?" ], inputs=inp, ) if __name__ == '__main__': demo.launch()